Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = 3/1x3 + 3/3x5 + 3/5x7 + ... + 3/45x47 + 3/47x49
M = 3/2 x (2/1x3 + 2/3x5 + 2/5x7 + ... + 2/45x47 + 2/47x49)
M = 3/2 x (1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/45 - 1/47 + 1/47 - 1/49)
M = 3/2 x (1 - 1/49)
M = 3/2 x 48/49
M = 72/49
N tính tương tự, nhân N với 5/4
\(B=\dfrac{1}{4}\times\left(\dfrac{4}{1\times5}+\dfrac{4}{5\times9}+\dfrac{4}{9\times13}+...+\dfrac{4}{125\times129}\right)\)
\(=\dfrac{1}{4}\times\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{125}-\dfrac{1}{129}\right)\)
\(=\dfrac{1}{4}\times\left(1-\dfrac{1}{129}\right)=\dfrac{1}{4}\times\dfrac{128}{129}=\dfrac{32}{129}\)
A = 3/1×5 + 3/5×9 + 1/9×13 + ... + 9/97×101 + 3/101×105
A = 3/4 × (4/1×5 + 4/5×9 + 4/9×13 + ... + 4/97×101 + 4/101×105)
A = 3/4 × (1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + ... + 1/97 - 1/101 + 1/101 - 1/105)
A = 3/4 × (1 - 1/105)
A = 3/4 × 104/105
A = 26/35
B = 1/5 + 1/25 + 1/125 + 1/625 + 1/3125 + 1/15625
5B = 1 + 1/5 + 1/25 + 1/125 + 1/625 + 1/3125
5B - B = (1 + 1/5 + 1/25 + 1/125 + 1/625 + 1/3125) - (1/5 + 1/25 + 1/125 + 1/625 + 1/3125 + 1/15625)
4B = 1 - 1/15625
4B = 15624/15625
B = 15624/15625 : 4
B = 3906/15625
C = 1 + 2 + 4 + 8 + 16 + ... + 2048 + 4096
2C = 2 + 4 + 8 + 16 + 32 + ... + 4096 + 8192
2C - C = (2 + 4 + 8 + 16 + 32 + ... + 4096 + 8192) - (1 + 2 + 4 + 8 + ... + 2048 + 4096)
B = 8192 - 1
B = 8191
\(S=\dfrac{1}{5\times9}+\dfrac{1}{9\times13}+...+\dfrac{1}{41\times45}\)
\(\Rightarrow4S=\dfrac{4}{5\times9}+\dfrac{4}{9\times13}+...+\dfrac{4}{41\times45}\)
\(\Rightarrow4S=\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}\)
\(\Rightarrow4S=\dfrac{1}{5}-\dfrac{1}{45}\)
\(\Rightarrow4S=\dfrac{8}{45}\)
\(\Rightarrow S=\dfrac{2}{45}\)
\(=\dfrac{1}{4}\left(\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{41\cdot45}\right)\)
\(=\dfrac{1}{4}\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}\right)\)
\(=\dfrac{1}{4}\cdot\dfrac{8}{45}=\dfrac{2}{45}\)
\(I=\dfrac{2}{1\times5}+\dfrac{2}{5\times9}+\dfrac{2}{9\times13}+...+\dfrac{2}{181\times185}\)
\(=\dfrac{1}{2}\times\left(\dfrac{4}{1\times5}+\dfrac{4}{5\times9}+...+\dfrac{4}{181\times185}\right)\)
\(=\dfrac{1}{2}\times\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{181}-\dfrac{1}{185}\right)\)
\(=\dfrac{1}{2}\times\left(1-\dfrac{1}{185}\right)=\dfrac{1}{2}\times\dfrac{184}{185}=\dfrac{92}{185}\)