Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 3/1×5 + 3/5×9 + 1/9×13 + ... + 9/97×101 + 3/101×105
A = 3/4 × (4/1×5 + 4/5×9 + 4/9×13 + ... + 4/97×101 + 4/101×105)
A = 3/4 × (1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + ... + 1/97 - 1/101 + 1/101 - 1/105)
A = 3/4 × (1 - 1/105)
A = 3/4 × 104/105
A = 26/35
B = 1/5 + 1/25 + 1/125 + 1/625 + 1/3125 + 1/15625
5B = 1 + 1/5 + 1/25 + 1/125 + 1/625 + 1/3125
5B - B = (1 + 1/5 + 1/25 + 1/125 + 1/625 + 1/3125) - (1/5 + 1/25 + 1/125 + 1/625 + 1/3125 + 1/15625)
4B = 1 - 1/15625
4B = 15624/15625
B = 15624/15625 : 4
B = 3906/15625
C = 1 + 2 + 4 + 8 + 16 + ... + 2048 + 4096
2C = 2 + 4 + 8 + 16 + 32 + ... + 4096 + 8192
2C - C = (2 + 4 + 8 + 16 + 32 + ... + 4096 + 8192) - (1 + 2 + 4 + 8 + ... + 2048 + 4096)
B = 8192 - 1
B = 8191
a) \(M=\frac{2\times2}{1\times5}+\frac{2\times2}{5\times9}+\frac{2\times2}{9\times13}+...+\frac{2\times2}{45\times40}\)
\(M=\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+...+\frac{4}{45\times49}\)
\(M=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{45}-\frac{1}{49}\)
\(M=1-\frac{1}{49}\)
\(M=\frac{48}{49}\)
b) \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+5+...+10}\)
= \(\frac{2}{2\times\left(1+2\right)}+\frac{2}{2\times\left(1+2+3\right)}+...+\frac{2}{2\times\left(1+2+3+...+10\right)}\)
\(=\frac{2}{6}+\frac{2}{12}+...+\frac{2}{110}\)
\(=\frac{2}{2\times3}+\frac{2}{3\times4}+...+\frac{2}{10\times11}\)
\(=2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=2\times\left(\frac{1}{2}-\frac{1}{11}\right)\)
\(=2\times\frac{9}{22}\)
\(=\frac{9}{11}\)
Mình trả lời câu a nha M= 4/1*5+4/5*9+4/9*13+...+4/45*49 M=1-1/5+1/5-1/9+1/9-1/13+...+1/45-1/49 M=1-1/49=48/49
2) \(\frac{3}{1\times3}+\frac{3}{3\times5}+\frac{3}{5\times7}+...+\frac{3}{99\times101}+\frac{3}{101\times103}\)
\(=\frac{3}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{101\times103}\right)\)
\(=\frac{3}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{101}-\frac{1}{103}\right)\)
\(=\frac{3}{2}\times\left(1-\frac{1}{103}\right)\)
\(=\frac{3}{2}\times\frac{101}{103}\)
\(=\frac{303}{206}\)
917749738461936926399639748776398646491639394748947630373937366
\(\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+\frac{1}{9\times11}+\frac{1}{11\times13}\)
\(=\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}+\frac{2}{11\times13}\right)\)
\(=\frac{1}{2}\times\left(\frac{3-1}{1\times3}+\frac{5-3}{3\times5}+\frac{7-5}{5\times7}+\frac{9-7}{7\times9}+\frac{11-9}{9\times11}+\frac{13-11}{11\times13}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{13}\right)=\frac{6}{13}\)
Do đó ta có:
\(\frac{6}{13}\times y=\frac{3}{5}\)
\(\Leftrightarrow y=\frac{13}{10}\).
M = 3/1x3 + 3/3x5 + 3/5x7 + ... + 3/45x47 + 3/47x49
M = 3/2 x (2/1x3 + 2/3x5 + 2/5x7 + ... + 2/45x47 + 2/47x49)
M = 3/2 x (1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/45 - 1/47 + 1/47 - 1/49)
M = 3/2 x (1 - 1/49)
M = 3/2 x 48/49
M = 72/49
N tính tương tự, nhân N với 5/4