K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2023

\(S=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2005}}\)

\(2.S=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\)

\(2.S-S=\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2006}}\right)\)

\(S=2-\dfrac{1}{2^{2006}}\)

19 tháng 8 2021

Đặt A=22+23+..+22005
 
2A=23+24+..+22006
suy ra 2A-A=(23+24+..+22006) - (22+23+..+22005)
A=22006-22
suy ra C=4+22006-4
           C=22006    .Là lũy thừa của 2 (đpcm)

 

19 tháng 8 2021

C=4+22+23+...+22005

2C=8+23+24+...+22006

2C-C=(8+23+24+...+22006)-(4+22+23+...+22005)

C=4+22005-22

C=22-22+22005

C=22005(đpcm)

26 tháng 8 2021

\(S=1-2+2^2-2^3+...+2^{2012}-2^{2013}\)

\(\Rightarrow2S=2-2^2+2^3-2^4+...+2^{2013}-2^{2014}\)

\(\Rightarrow2S+S=2-2^2+2^3-...-2^{2014}+1-2^2-2^3+...-2^{2013}\)

\(\Rightarrow3S=1-2^{2014}\)\(\Rightarrow3S-2^{2014}=1-2^{2015}\)

Sửa đề: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)

Ta có: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)

\(=\dfrac{1}{20}+\left(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)\)

\(\Leftrightarrow S>\dfrac{1}{20}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{1}{4}+\dfrac{1}{3}+\dfrac{1}{4}\)

\(\Leftrightarrow S>\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)(đpcm)

29 tháng 6 2021

thank you

6 tháng 11 2021

\(2S=2+2^2+...+2^{2022}\\ \Leftrightarrow2S-S=S=2^{2022}-1\)

12 tháng 6 2021

                                    Giải

Đặt A=1/21+1/22+1/23+1/24+...+1/80

Ta có:

A=(1/21+1/22+...+1/40)+(1/41+...+1/80)

→A>(1/40+1/40+...+1/40)+(1/80+..+1/80)

→A>20/40+40/80

→A>1/2+1/2

→A>1 (1)

Lại có:

A=(1/21+1/22+...+1/40)+(1/41+...+1/80)

→A<(1/20+1/20+...+1/20)+(1/40+...+1/40)

→A<20/20+40/40

→A<2 (2)

Từ (1),(2)→1<A<2

→A không là số tự nhiên

11 tháng 7 2021

Đặt A=1/21+1/22+1/23+1/24+...+1/80

Ta có:

A=(1/21+1/22+...+1/40)+(1/41+...+1/80)

→A>(1/40+1/40+...+1/40)+(1/80+..+1/80)

→A>20/40+40/80

→A>1/2+1/2

→A>1 (1)

Lại có:

A=(1/21+1/22+...+1/40)+(1/41+...+1/80)

→A<(1/20+1/20+...+1/20)+(1/40+...+1/40)

→A<20/20+40/40

→A<2 (2)

Từ (1),(2)→1<A<2

→A không là số tự nhiên