K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{50.51}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\)

\(=\frac{1}{2}-\frac{1}{51}=\frac{49}{102}\)

Vậy \(A=\frac{49}{102}\)

\(B=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(=2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=2\left(\frac{1}{3}-\frac{1}{101}\right)\)

\(=2.\frac{98}{303}=\frac{196}{303}\)

17 tháng 9 2017

a ) 1/x = 1/6 + y/3 = 1/6 + y.2/6 = 1+y.2/6 

Để 1+ y.2 / 6 = 1/x thì 1 + y.2 = { 1 ; 2 ; 3 ; 6 }

1+y.2 = 1 => y = 0 <=> x = 6

1 + y.2 = 2 => không tồn tại y

1 + y.2 = 3 => y = 1 <=> x = 2

1 + y. 2 = 6 => không tồn tại y 

b ) x/6 - 1/y = 1/2 = 3/6

=> x > 3 

x = 4 thì y = 6

x = 5 thì y = 3

x = 6 thì y = 2

17 tháng 9 2017

a) \(\frac{1}{x}=\frac{1}{6}+\frac{y}{3}\Leftrightarrow\frac{1}{x}=\frac{1+2y}{6}\)

\(\Leftrightarrow x\left(1+2y\right)=6\)\(\Rightarrow x;\left(1+2y\right)\)là cặp ước của 6.

Bạn tự lập bảng và tìm giá trị của x và y.

b) \(\frac{x}{6}-\frac{1}{y}=\frac{1}{2}\Leftrightarrow\frac{1}{y}=\frac{x}{6}-\frac{1}{2}=\frac{x-3}{6}\)

\(\Leftrightarrow y\left(x-3\right)=6\)\(\Rightarrow y;\left(x-3\right)\)là cặp ước của 6.

16 tháng 3 2018

\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}...+\frac{19}{9^2.10^2}\)

=> \(A=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}...+\frac{19}{81.100}=\left(\frac{1}{1}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{9}\right)+\left(\frac{1}{9}-\frac{1}{16}\right)+...+\left(\frac{1}{81}-\frac{1}{100}\right)\)

=> \(A=\frac{1}{1}-\frac{1}{100}=1-\frac{1}{100}< 1\)

=> A <1 

(Là nhỏ hơn 1 chứ không phải lớn hơn 1 bạn nhé)

22 tháng 2 2018

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{\left(x+1\right)-x}{x\left(x+1\right)}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1004}{2010}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2010}\)
\(\Leftrightarrow x+1=2010\)
\(\Leftrightarrow x=2009\)

5 tháng 5 2018

khỏi ghi lại đề nha

A=1-1/2+1/2-1/3+1/3-1/4+......+1/49-1/50

A=1-1/50

A=49/50

6 tháng 7 2020

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

28 tháng 5 2017

ta có: C = 1/32 + 1/34 + 1/36 +...+ 1/3100 => 9C = 1 + 1/32 +1/34 +...+1/398

=> 9C - C = (1 + 1/32 + 1/34 +...+1/398 ) - (1/32 +1/34 + 1/36 +...+ 1/3100)

=> 8C = 1 - 1/3100 => C = (1 - 1/3100 ) / 8

đúng ko nhỉ

28 tháng 5 2017

Hỏi gì mà khó dữ vậy!!!!!!