K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2018

khỏi ghi lại đề nha

A=1-1/2+1/2-1/3+1/3-1/4+......+1/49-1/50

A=1-1/50

A=49/50

6 tháng 7 2020

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

4 tháng 5 2019

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=\frac{1}{1}-\frac{1}{50}\)

\(A=\frac{50-1}{50}=\frac{49}{50}\)

4 tháng 5 2019

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}=\frac{49}{50}\)

  1/1.2+1/2.3+1/3.4+.....+1/49.50

=1-1/2+1/2-1/3+1/3-1/4+....+1/49-1/50

=1-1/50

=49/50

5 tháng 2 2019

 \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

15 tháng 4 2019

gọi biểu thức trên là A                                                                                                                                                                                          A=1/1 -1/2+1/3-1/4+...+1/2017-12018+1/2018-1/2019                                                                                                                                        A=1/1-1/2019                                                                                                                                                                                                       A=2018/2019

15 tháng 4 2019

1/1.2+1/2.3+1/3.4+1/4.5+...+1/2017.2018+1/2018.2019

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2018}-\frac{1}{2019}\)

\(=1-\frac{1}{2019}\)

\(=\frac{2019}{2019}-\frac{1}{2019}\)

\(=\frac{2018}{2019}\)

22 tháng 3 2015

A=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+...+\(\frac{1}{49}\)-\(\frac{1}{50}\)

  = 1-\(\frac{1}{50}\)

  = \(\frac{49}{50}\)

14 tháng 3 2017

ta có công thức tính tổng quát 1/[n(n+1)] = 1/n -1/(n+1) 
=> A=1/1.2+ 1/2.3+1/3.4+1/4.5+...+1/49.50 
=1/1 -1/2 +1/2 -1/3 +1/3-1/4+.......+1/49 -1/50 
= 1 -1/50 = 49/50 

Ai thấy đúng thì tk cho mk nhé 

21 tháng 5 2021

= -101/100

21 tháng 5 2021


\(B=-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{98.99}-\frac{1}{99.100}\\ =-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\\ =-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\\ =-\left(1-\frac{1}{100}\right)=\frac{-99}{100}\)

15 tháng 5 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2016.2017}\)

\(A=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+......+\left(\frac{1}{2016}-\frac{1}{2017}\right)\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2016}-\frac{1}{2017}\)

\(A=\frac{1}{1}-\frac{1}{2017}\)

\(A=\frac{2016}{2017}\)

15 tháng 5 2017

A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2016.2017}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2016}-\frac{1}{2017}\)

\(\Rightarrow A=1-\frac{1}{2017}\)

\(\Rightarrow A=\frac{2016}{2017}\)

22 tháng 5 2021

\(\Leftrightarrow x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\right)=\frac{1}{100}+\frac{1}{99}-\frac{1}{100}\)

\(\Leftrightarrow x-\frac{98}{99}=\frac{1}{99}\Leftrightarrow x=1\)

1 tháng 6 2020

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=\frac{1}{1}-\frac{1}{50}\)

\(A=\frac{49}{50}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

26 tháng 6 2018

\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{200.201}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{200}-\frac{1}{201}\)

\(=\frac{1}{2}-\frac{1}{201}\)

\(=\frac{201}{402}-\frac{2}{402}\)

\(=\frac{199}{402}\)

26 tháng 6 2018

\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{200.201}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{200}-\frac{1}{201}\)

\(=\frac{1}{2}-\frac{1}{201}\)

\(=\frac{199}{402}\)