K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2016.2017}\)

\(A=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+......+\left(\frac{1}{2016}-\frac{1}{2017}\right)\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2016}-\frac{1}{2017}\)

\(A=\frac{1}{1}-\frac{1}{2017}\)

\(A=\frac{2016}{2017}\)

15 tháng 5 2017

A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2016.2017}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2016}-\frac{1}{2017}\)

\(\Rightarrow A=1-\frac{1}{2017}\)

\(\Rightarrow A=\frac{2016}{2017}\)

10 tháng 5 2017

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2016\cdot2017}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(=1-\frac{1}{2017}=\frac{2016}{2017}\)

15 tháng 4 2019

gọi biểu thức trên là A                                                                                                                                                                                          A=1/1 -1/2+1/3-1/4+...+1/2017-12018+1/2018-1/2019                                                                                                                                        A=1/1-1/2019                                                                                                                                                                                                       A=2018/2019

15 tháng 4 2019

1/1.2+1/2.3+1/3.4+1/4.5+...+1/2017.2018+1/2018.2019

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2018}-\frac{1}{2019}\)

\(=1-\frac{1}{2019}\)

\(=\frac{2019}{2019}-\frac{1}{2019}\)

\(=\frac{2018}{2019}\)

14 tháng 5 2017

A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

   = \(1-\frac{1}{2017}\)

   = \(\frac{2016}{2017}\)

14 tháng 5 2017

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(A=1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{2016}+\frac{1}{2016}\right)-\frac{1}{2017}\)

\(A=1+0+0+...+0-\frac{1}{2017}\)

\(A=1-\frac{1}{2017}\)

\(A=\frac{2017}{2017}-\frac{1}{2017}\)

\(A=\frac{2016}{2017}\)

Vậy:  \(A=\frac{2016}{2017}\)

6 tháng 6 2015

\(M=\frac{1}{9.10}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\right)=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\right)=\frac{1}{90}-\left(1-\frac{1}{9}\right)=\frac{1}{90}-\frac{8}{9}=-\frac{79}{90}\)

15 tháng 7 2018

yyyyyyyyyyyyyyyyyyyyyyyyyyyy

2 tháng 5 2019

A=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2016}-\frac{1}{2017}\)

A=\(\frac{1}{1}-\frac{1}{2017}\)

A=\(\frac{2016}{2017}\)

mình quên ghi dấu "=" xin lỗi nhé

Ta có \(\frac{1}{1\cdot2}\)+\(\frac{1}{2\cdot3}\)+\(\frac{1}{3\cdot4}\)+...+\(\frac{1}{2015\cdot2016}\)

     =1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+...+\(\frac{1}{2015}\)-\(\frac{1}{2016}\)

     =1-\(\frac{1}{2016}\)

     =\(\frac{2015}{2016}\)(bạn cứ nhớ công thức là làm được)

7 tháng 5 2016

Ta thấy: \(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2};\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};....;\frac{1}{2015.2016}=\frac{1}{2015}-\frac{1}{2016}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{2015.2016}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{2016}\)

\(=1-\frac{1}{2016}=\frac{2015}{2016}\)

27 tháng 4 2017

A= 1/1-1/2+1/2-1/3+1/4-1/5+...+1/101-1/102

A=1-1/102=102/102-1/102=101/102

ý b thì chờ mình tí tìm cách lập luận đã nhé

27 tháng 4 2017

A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}+\frac{1}{101.102}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{102}\)

\(A=1-\frac{1}{102}\)

\(A=\frac{101}{102}\)

10 tháng 6 2016

Thừa số thứ nhất của mẫu số của phân số thứ 100 là:

\(\left(100-1\right):1+1=100\)

=> Mẫu số của phân số thứ 100 là 100.101

Tổng 100 số hạng đầu tiên:

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{100}{101}\)

b) Ta xét mẫu số của các số hạng trong dãy :

6 = 1.6

66 = 6.11

176 = 11.16

336 = 16.21

........

Thừa số thứ nhất của mẫu của phân số thứ 100 của dãy là:

\(\left(100-1\right).5+1=496\)

=> Mẫu của phân số thứ 100 là 496.501.

Tính tổng 100 số hạng đầu:

\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+\frac{1}{16.21}+...+\frac{1}{496.501}\)

\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{496}-\frac{1}{501}\)

\(=1-\frac{1}{501}=\frac{500}{501}\)

10 tháng 6 2016

giúp tớ vớigianroi

3 tháng 5 2018

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

                                                                     \(=1-\frac{1}{6}\)

                                                                     \(=\frac{5}{6}\)

3 tháng 5 2018

1/1.2+1/2.3+1/3.4+1/4.5+1/5.6

=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6

=1-1/6

=5/6