Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1 + 2 + 22 + 23 + 24 + … + 210): 2047
= [(1+210).210 : 2 ] : 2047
= [211. 105] : 2047
= 22155 : 2047
mình tính đến khúc này thì thấy chia ko hết :Đ
bạn xem lại đề hoặc có thể mik sai thật
Ta có:\(\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{10.10}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\left(1\right)\)
Đặt \(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(A=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\left(2\right)\)
Từ \(\left(1\right)\)và\(\left(2\right)\)suy ra
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}>\frac{9}{22}\)
^^
a: \(=\dfrac{17}{7}+\dfrac{2}{9}-\dfrac{10}{7}-\dfrac{5}{3}\cdot9=1+\dfrac{2}{9}-15=-14+\dfrac{2}{9}=-\dfrac{126}{9}+\dfrac{2}{9}=-\dfrac{124}{9}\)
b: \(=\dfrac{-11}{23}\left(\dfrac{6}{7}+\dfrac{8}{7}\right)-\dfrac{1}{23}=\dfrac{-22}{23}-\dfrac{1}{23}=-1\)
c: \(=\left(\dfrac{377}{-231}-\dfrac{123}{89}+\dfrac{34}{791}\right)\cdot\dfrac{4-3-1}{24}=0\)
d: \(=\dfrac{12}{7}\left(19+\dfrac{5}{8}-15-\dfrac{1}{4}\right)=\dfrac{12}{7}\cdot\dfrac{35}{8}=\dfrac{15}{2}\)
Bài 3:
a: Ta có: \(23\left(42-x\right)=23\)
\(\Leftrightarrow42-x=1\)
hay x=41
b: Ta có: 15(x-3)=30
nên x-3=2
hay x=5
Bài 1:
a: 32+89+68=100+89=189
b: 64+112+236=300+112=412
c: \(1350+360+650+40=2000+400=2400\)
\(a,2^2=4,2^3=8,2^4=16,2^5=32,2^6=64,2^7=128,2^8=256,2^9=512,2^{10}=1024\)
\(b,3^2=9,3^3=27,3^4=81,3^5=243\)
\(c,4^2=16,4^3=64,4^4=256\)
\(d,5^2=25,5^3=125,5^4=625\)
Ta có:
\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\)
\(\Rightarrow2A=1+\frac{1}{2}+...+\frac{1}{2^9}\)
Lấy \(2A-A\), ta có:
\(2A-A=A=\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(=1+\frac{1}{2}+...+\frac{1}{2^9}-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{10}}\)
\(=\left(1-\frac{1}{2^{10}}\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+...+\left(\frac{1}{2^9}-\frac{1}{2^9}\right)\)
\(=1-\frac{1}{2^{10}}\)
\(=1-\frac{1}{1024}\)
\(=\frac{1023}{1024}\)
Vậy \(A=\frac{1023}{1024}\)