K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(\Rightarrow A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{50-49}{49.50}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A=1-\frac{1}{50}=\frac{49}{50}\)

B=\(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{14.17}+\frac{3}{17.20}\)

\(\Rightarrow B=\frac{5-2}{2.5}+\frac{8-5}{5.8}+...+\frac{17-14}{14.17}+\frac{20-17}{17.20}\)

\(\Rightarrow B=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)

\(\Rightarrow B=\frac{1}{2}-\frac{1}{20}=\frac{10}{20}-\frac{1}{20}=\frac{9}{20}\)

24 tháng 4 2016

a) = 2(1-1/2+1/2-1/3+...+1/19-1/20)

    = 2(1-1/20)

    = 2.19/20

    = 19/10

b) = 7(1/2-1/3+1/3-1/4+...+1/6-1/7)

   = 7(1/2 - 1/7)

   = 7.5/14

   = 5/2

c) = 1/2-1/5+1/5-1/8+...+1/14-1/17

   = 1/2 - 1/17

   = 15/34

Chúc bạn học tốt nhé

24 tháng 4 2016

a)2/1.2+2/2.3+....+2/19.20

=2(1/1.2+1/2.3+....+1/19.20)

=2(1-1/2+1/2-1/3+.....-1/20)

=2(1-1/20)

2(19/20)=38/20=19/10

b)7/2.3+7/3.4+7/4.5+7/5.6+7/6.7

7(1/2.3+1/3.4+1/4.5+1/5.6+1/6.7)

7(1/2-1/3+1/3-1/4+.....-1/7)

7(1/2-1/7)

7(7/14-2/14)=7.5/14=35/14=5/2

c)3/2.5+3/5.8+3/8.11+3/11.14+3/14.17

1/2-1/5+1/5-1/8+......+1/14-1/17

1/2-1/17=17/34-2/34=15/34

23 tháng 8 2019

a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\)

\(\Rightarrow A< 1\)

23 tháng 8 2019

b) \(B=\frac{1}{3}+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{3}\right)^{100}\)

\(\Rightarrow3B=1+\frac{1}{3}+...+\left(\frac{1}{3}\right)^{99}\)

\(\Rightarrow3B-B=1-\left(\frac{1}{3}\right)^{100}\)

\(\Rightarrow2B=1-\left(\frac{1}{3}\right)^{100}< 1\)

\(\Rightarrow2B< 1\)

\(\Rightarrow B< \frac{1}{2}\)

26 tháng 6 2019

a)\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)

=\(\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+\frac{4}{4!}-\frac{1}{4!}+...+\frac{100}{100!}-\frac{1}{100!}\)

=\(1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)

=\(1-\frac{1}{100!}< 1\)

\(\Rightarrow\)\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}< 1\)

b)\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)

=\(\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)

=\(\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)=\(1+1-\frac{1}{99}-\frac{1}{100}\)

=\(2-\frac{1}{99}-\frac{1}{100}< 2\)

\(\Rightarrow\)\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\)

29 tháng 6 2021

Ai giúp đi, làm ơnnnnnnnnnnnnnnnnnnn

29 tháng 6 2021

\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(B=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(B< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)

\(B< \frac{50}{60}\Leftrightarrow B< \frac{5}{6}\)

6 tháng 12 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)

\(A=1-\frac{1}{20}\)

\(A=\frac{19}{20}\)

6 tháng 12 2017

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)

\(=1-\frac{1}{20}\)

\(=\frac{19}{20}\)

25 tháng 12 2016

Hỏi thật không

29 tháng 8 2017

A=\(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{49\cdot50}\)

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)

A=\(1-\frac{1}{50}\)

\(A=\frac{49}{50}\)

BC chịu thua