Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính tử số:
\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{19.20}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{19}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{20}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{20}\right)\)
\(=1+\frac{1}{2}+...+\frac{1}{20}-\left(1+\frac{1}{2}+...+\frac{1}{10}\right)\)
\(=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\)
\(\Rightarrow A=\frac{\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}}{\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}}=1\)
\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(B=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(B< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)
\(B< \frac{50}{60}\Leftrightarrow B< \frac{5}{6}\)
Ta có: 1/1.2 = 1- 1/2
1/3.4 = 1/3 - 1/4
...............
1/19.20 = 1/19 - 1/20
Cộng vế với vế ta đc:
A = 1- 1/20 = 19/20
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{17.18}+\frac{1}{19.20}\)
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{17}-\frac{1}{18}+\frac{1}{19}-\frac{1}{20}\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{17}+\frac{1}{19}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+..+\frac{1}{18}+\frac{1}{20}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{18}+\frac{1}{20}\right)\)
\(A=\left(1+\frac{1}{2}+...+\frac{1}{20}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{9}+\frac{1}{10}\right)\)
\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}\)
\(\frac{A}{B}=1\)
dạng tổng quát của mỗi phân số là 1/n(n+1) = 1/n -1/n+1
áp dụng vào làm với các phân số trong biểu thức cuối cùng còn 1-1/10=19/20
= 1 . 1/2 + 1/2 . 1/3 + ... + 1/99 . 1/100
= 1 . 1/100
= 1/100
SAI thi mai len bao sai cho nao nha !!!!
Ta có công thức :
\(\frac{1}{k\left(k+1\right)}=\frac{\left(k+1\right)-k}{k\left(k+1\right)}=\frac{k+1}{k\left(k+1\right)}-\frac{k}{k\left(k+1\right)}=\frac{1}{k}-\frac{1}{k+1}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}=\frac{n-1}{n}\)
Ta có : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{a\left(a+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{a}-\frac{1}{a+1}\)
\(=1-\frac{1}{a+1}\)
\(=\frac{a+1}{a+1}-\frac{1}{a+1}=\frac{a}{a+1}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
\(A=1-\frac{1}{20}\)
\(A=\frac{19}{20}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)
\(=1-\frac{1}{20}\)
\(=\frac{19}{20}\)