K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2016

Ta có:

\(A=\frac{1}{2.3}+\frac{1}{6.5}+\frac{1}{10.7}+...+\frac{1}{198.101}\)

\(=\frac{2}{\left(2.3\right).2}+\frac{2}{\left(6.5\right).2}+\frac{2}{\left(10.7\right).2}+...+\frac{2}{\left(198.101\right).2}\)

\(=\frac{2}{2.\left(3.2\right)}+\frac{2}{6.\left(5.2\right)}+\frac{2}{10.\left(7.2\right)}+...+\frac{2}{198.\left(101.2\right)}\)

\(=\frac{2}{2.6}+\frac{2}{6.10}+\frac{2}{10.14}+...+\frac{2}{198.202}\)

\(=\frac{4}{2.6}:2+\frac{4}{6.10}:2+\frac{4}{10.14}:2+...+\frac{4}{198.202}:2\)

\(=\left(\frac{4}{2.6}+\frac{4}{6.10}+\frac{4}{10.14}+...+\frac{4}{198.202}\right):2\)

\(=\left(\frac{1}{2}-\frac{1}{202}\right):2\)

\(=\frac{50}{202}=\frac{25}{101}\)

Vậy \(A=\frac{25}{101}\)

4 tháng 7 2016

frac,left,right là gì vậy ?

19 tháng 2 2016

vì 1/1*2=1-1/2

   1/2*3=1/2-1/3

.....................

1/2014*2015=1/2014-1/2015

=1-1/2+1/2-1/3+1/3-....+1/2014-1/2015

=1-1/2015

=2014/2115

19 tháng 2 2016

\(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+....+\frac{1}{2014x2015}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

=\(1-\frac{1}{100}\)

=\(\frac{99}{100}\)

10 tháng 3 2018

\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(S=1-\frac{1}{2018}\)

\(S=\frac{2018}{2018}-\frac{1}{2018}\)

\(S=\frac{2017}{2018}\)

10 tháng 3 2018

\(S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}.\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{2017}+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}=\frac{2017}{2018}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{49}-\frac{1}{50}.\)

=>1/2-1/50=25/50-1/50=24/50=12/25

28 tháng 6 2021

`1/(2xx3)+1/(3xx4)+....+1/(49xx50)`

`=1/2-1/3+1/3-1/4+....+1/49-1/50`

`=1/2-1/50`

`=25/50-1/50`

`=24/50`

`=12/25`

18 tháng 7 2016

c) 

\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\)

   \(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)\)

   \(=\frac{1}{2}.\left(1-\frac{1}{21}\right)\)

   \(=\frac{1}{2}.\frac{20}{21}\)

   \(=\frac{10}{21}\)

18 tháng 7 2016

\(A\)\(\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{49.50}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}=\)\(\frac{1}{3}-\frac{1}{50}=\frac{50}{150}-\frac{3}{150}=\frac{47}{150}\)

19 tháng 6 2021

   \(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{99x100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{49}{100}\)

9 tháng 11 2020

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(=\frac{1}{1}-\frac{1}{6}\)

\(=\frac{5}{6}\)

13 tháng 7 2021

\(\frac{1}{1.2}\)\(+\)\(\frac{1}{2.3}\)\(+\)\(\frac{1}{3.4}\)\(+\)\(\frac{1}{4.5}\)\(+\)\(\frac{1}{5.6}\)

\(=\)\(\frac{1}{1}\)\(-\)\(\frac{1}{2}\)\(+\)\(\frac{1}{2}\)\(-\)\(\frac{1}{3}\)\(+\)\(\frac{1}{3}\)\(-\)\(\frac{1}{4}\)\(+\)\(\frac{1}{4}\)\(-\)\(\frac{1}{5}\)\(+\)\(\frac{1}{5}\)\(-\)\(\frac{1}{6}\)

\(=\)\(\frac{1}{1}\)\(-\)\(\frac{1}{6}\)

\(=\)\(\frac{5}{6}\)

Hok tốt

\(C=-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-....-\frac{1}{42}+\frac{1}{43}-\frac{1}{43}+\frac{1}{44}\)

\(C=-1+\frac{1}{44}\)

\(C=-\frac{43}{44}\)

8 tháng 4 2016

C= \(-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...\frac{1}{43.44}\right)=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{43}-\frac{1}{44}\right)\)

 =\(-\left(1-\frac{1}{44}\right)=-\frac{43}{44}\)

=1/2-1/3+1/3-1/4+...+1/98-1/99+1/99-1/100

=1/2-1/100

=49/100

AH
Akai Haruma
Giáo viên
4 tháng 1 2023

Lời giải:

Gọi tổng trên là $A$

$A=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{100-99}{99.100}$

$=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}$

$=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}$