Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = \(\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+...+\dfrac{1}{99x100}\)
M = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
M = \(1-\dfrac{1}{100}\)
M = \(\dfrac{99}{100}\)
\(M=1\times\dfrac{1}{2}+\dfrac{1}{2}\times\dfrac{1}{3}+\dfrac{1}{3}\times\dfrac{1}{4}+...+\dfrac{1}{99}\times\dfrac{1}{100}\)
\(M=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(M=1-\dfrac{1}{100}\)
\(M=\dfrac{99}{100}\)
a, = 1/2 x 2/3 x 3/4 x .... x 99/100 = 1/100
b, = 24/25 x 5/7 x 7/9 x .... x 97/99 = 24/25 x 5/99 = 8/165
a) \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{100}\right)\)
=\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)
=
Bài 3:
= 1- 1/2 + 1/2 -1/3 +...+ 1/98 -1/99
= 1- 1/99
= 98/99
Bài 4:
= 1/2*3 + 1/3*4 + 1/4*5 +...+ 1/10*11
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 +...+ 1/10 - 1/11
= 1/2 - 1/11= 9/22
Làm lại.
Giải:
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}...\frac{99}{100}\)
\(=\frac{1\times2\times3\times4\times...\times99}{2\times3\times4\times5\times6\times...\times100}\)
\(=\frac{1}{100}\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}...\frac{99}{100}\)
\(=\frac{1.2.3.4...99}{2.3.4.5.6...100}\)
\(=\frac{1}{100}\)
A=1.2+2.3+3.4+...+99.100
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100(101-98)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3A=99.100.101
A=333300
\(1\frac{1}{2}\times1\frac{1}{3}\times1\frac{1}{4}\times...\times1\frac{1}{100}\)
\(=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times...\times\frac{101}{100}\)
\(=\frac{3\times4\times5\times...\times101}{2\times3\times4\times...\times100}\)
\(=\frac{101}{2}\)