K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2016

a  A=4x-x^2+3

      =(x-2)^2-1

     MIN A= -1 khi (x-2)^2=0

      x-2=0

      x=2

B=x-x^2

B=-x^2+x

-B=x^2-x

-B=(x-1/2)^2-1/4

B=-(x-1/2)^2+1/4

MAX B=1/4 khi -(x-1/2)^2=0

x-1/2=0

x=1/2

N=2x-2x^2-5

-N=2x^2-2x+5

-N=2(x^2-x+2)+1

-N=2{(x-1/2)^2+7/4}+1

-N=2(x-1/2)^2+7/2+1

-N=2(x-1/2)^2+9/2

N=-2(x-1/2)^2-9/2

MAX N=-9/2 khi -2(x-1/2)^2=0

x-1/2=0

x=1/2

3 tháng 9 2021

\(A=x^2-4x+1=\left(x^2-4x+4\right)-3=\left(x-2\right)^2-3\ge-3\)

Vậy \(A_{Min}=-3khix=2\)

 

3 tháng 9 2021

Bạn có thể giúp mình làm câu còn lại đc ko

mình đang vội lắm

14 tháng 5 2017

tu lam

14 tháng 5 2017

bạn chia ra thui có kq mmk làm cho

22 tháng 9 2021

Bài 5:

a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)

\(minA=5\Leftrightarrow x=2\)

b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)

Bài 4:

a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

\(maxM=7\Leftrightarrow x=2\)

b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)

\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)

 

1 tháng 4 2018

D = \(-\dfrac{5}{x^2-4x+7}\)

Vì: x2 - 4x + 7

= x2 - 4x + 4 + 3

= (x - 2)2 + 3 \(\ge\) 3 \(\forall\)x

\(\Rightarrow\) \(\dfrac{5}{\left(x-2\right)^2+3}\) \(\le\) \(\dfrac{5}{3}\) \(\forall\)x

\(\Rightarrow\) \(-\dfrac{5}{\left(x-2\right)^2+3}\)\(\ge\)-\(\dfrac{5}{3}\) \(\forall\)x

Dấu"=" xảy ra khi:

x - 2 = 0

\(\Rightarrow\) x = 2

Vậy.............

E = \(\dfrac{2x^2+4x+4}{x^2+2x+4}\)

Ta có:

\(\dfrac{2x^2+4x+4}{x^2+2x+4}\)

= \(\dfrac{2\left(x^2+2x+4\right)-4}{x^2+2x+4}\)

= 2 - \(\dfrac{4}{x^2+2x+4}\)

Vì:

x2 + 2x + 4

= x2 + 2x + 1 + 3

= (x + 1)2 + 3 \(\ge\) 3 \(\forall\)x

\(\Rightarrow\) \(\dfrac{4}{\left(x+1\right)^2+3}\) \(\le\) \(\dfrac{4}{3}\) \(\forall\)x

\(\Rightarrow\) 2 - \(\dfrac{4}{\left(x+1\right)^2+3}\) \(\le\) \(\dfrac{2}{3}\) \(\forall\)x

Dấu "=" xảy ra khi:

x + 1 = 0

\(\Rightarrow\) x = -1

Vậy...............

F = \(\dfrac{6x+8}{x^2+1}\)

= \(\dfrac{x^2+6x+9-x^2-1}{x^2+1}\)

= \(\dfrac{\left(x+3\right)^2-\left(x^2+1\right)}{x^2+1}\)

= \(\dfrac{\left(x+3\right)^2}{x^2+1}-1\) \(\ge\) -1 \(\forall\)x

Dấu "=" xảy ra khi:

(x + 3)2 = 0

\(\Rightarrow\) x + 3 = 0

\(\Rightarrow\) x = -3

Vậy.....................

2 tháng 4 2018

Cảm ơn bạn nha🙂