K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

tu lam

14 tháng 5 2017

bạn chia ra thui có kq mmk làm cho

20 tháng 10 2021

\(a,A=\left(x^2-x\right)\left(x^2-x-12\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)+36-36\\ A=\left(x^2-x+6\right)^2-36\ge-36\\ A_{min}=-36\Leftrightarrow x^2-x+6=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\\ b,B=4x^4+4x^3+5x^2+4x+3\\ B=\left(4x^4+4x^3+x^2\right)+\left(x^2+4x+4\right)-1\\ B=x^2\left(2x+1\right)^2+\left(x+2\right)^2-1\ge-1\\ B_{min}=-1\Leftrightarrow\left\{{}\begin{matrix}x\left(2x+1\right)=0\\x+2=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Vậy dấu \("="\) không xảy ra

12 tháng 10 2018

Thực hiện phép chia ta được thương là: \(2x^2+2x+1\)

Đặt \(A=2x^2+2x+1=2\left(x^2+x+\frac{1}{4}\right)+\frac{1}{2}=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall x\)

Dấu "=" xảy ra khi: \(x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)

Chúc bạn học tốt.

12 tháng 10 2018

Cảm ơn Pham Van Hung nhé😆🙋

7 tháng 7 2021

a,\(A=\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=\left(x^2+6x+5\right)\left(x^2+6x+8\right)\)

đặt \(x^2+6x+5=t=>t\left(t+3\right)=t^2+3t=t^2+2.\dfrac{3}{2}t+\dfrac{9}{4}-\dfrac{9}{4}\)

\(=\left(t+\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}< =>t=\dfrac{-3}{2}\)

\(=>A\)\(=-\dfrac{3}{2}\left(-\dfrac{3}{2}+3\right)=-2,25\)

Vậy Min A\(=-2,25\)

b,\(B=-x^2-4x-9y^2-6y-6\)

\(=-\left(x^2+4x+4\right)-\left(3y\right)^2-2.3y-1-1\)

\(=-\left(x+2\right)^2-\left(3y+1\right)^2-1\le-1\)

dấu"=' xảy ra\(< =>x=-2,y=-\dfrac{1}{3}\)

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

a.

$(x+1)(x+2)(x+4)(x+5)=(x+1)(x+5)(x+2)(x+4)=(x^2+6x+5)(x^2+6x+8)$

$=a(a+3)$ với $a=x^2+6x+5$

$=a^2+3a=(a^2+3a+\frac{9}{4})-\frac{9}{4}$

$=(a+\frac{3}{2})^2-\frac{9}{4}$

$=(x^2+6x+\frac{13}{2})^2-\frac{9}{4}\geq \frac{-9}{4}$

Vậy gtnn của biểu thức là $\frac{-9}{4}$. Giá trị này đạt tại $x^2+6x+\frac{13}{2}=0$

$\Leftrightarrow x=\frac{-6\pm \sqrt{10}}{2}$

a: Ta có: \(A=\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)

\(=8x^3+27-8x^3+2\)

=29

b: Ta có: \(B=\left(64x^3-1\right)-\left(4x-3\right)\left(16x^2+3\right)\)

\(=64x^3-1-64x^3-12x-48x^2+9\)

\(=-12x+8\)

c: Ta có: \(2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)

\(=2\left(x^2+xy+y^2\right)-3\left(-2xy\right)\)

\(=2x^2+2xy+2y^2+6xy\)

\(=2x^2+8xy+2y^2\)

30 tháng 8 2021

1) \(A=36x^2+12x+1=\left(6x+1\right)^2\ge0\)

\(minA=0\Leftrightarrow x=-\dfrac{1}{6}\)

2) \(B=9x^2+6x+1=\left(3x+1\right)^2\ge0\)

\(minB=0\Leftrightarrow x=-\dfrac{1}{3}\)

4) \(D=x^2-4x+y^2-8y+6=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\) 

\(minD=-14\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

30 tháng 8 2021

3) \(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)

\(minC\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

5) \(E=\left(x-8\right)^2+\left(x+7\right)^2=2x^2-2x+113=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{225}{2}\ge\dfrac{225}{2}\)

\(minE=\dfrac{225}{2}\Leftrightarrow x=\dfrac{1}{2}\)

27 tháng 8 2016

a  A=4x-x^2+3

      =(x-2)^2-1

     MIN A= -1 khi (x-2)^2=0

      x-2=0

      x=2

B=x-x^2

B=-x^2+x

-B=x^2-x

-B=(x-1/2)^2-1/4

B=-(x-1/2)^2+1/4

MAX B=1/4 khi -(x-1/2)^2=0

x-1/2=0

x=1/2

N=2x-2x^2-5

-N=2x^2-2x+5

-N=2(x^2-x+2)+1

-N=2{(x-1/2)^2+7/4}+1

-N=2(x-1/2)^2+7/2+1

-N=2(x-1/2)^2+9/2

N=-2(x-1/2)^2-9/2

MAX N=-9/2 khi -2(x-1/2)^2=0

x-1/2=0

x=1/2