Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3(1/1.2+1/2.3+...+1/99.100)
A=3(1-1/2+1/2-1/3+...+1/99-1/100)
A=3(1-1/100)
A=3 . 99/100
A= 297 /100
5B= 1.2.3.4.5+2.3.4.5.5+....+97.98.99.100.5
=1.2.3.4.5+2.3.4.5.6 -1.2.3.4.5+...+-96.97.98.99
=97.98.99.100.101=9505049400
=> B=1901009880
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100}=\frac{1}{3}.\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)=\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{970200}\right)=\frac{1}{18}-\frac{1}{6.970200}\)
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100}\)
\(=\frac{1}{3}.\left(\frac{3}{1.2.3.4}+ \frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)\)
\(=\frac{1}{3}.\frac{161699}{970200}=\frac{161699}{299106000}\)
ta có :
\(3A=-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
\(\Rightarrow4A=-1-\frac{1}{3^{101}}\)
\(\Rightarrow4A=\frac{-3^{101}-1}{3^{101}}\)
\(\Rightarrow A=\left(\frac{-3^{101}-1}{3^{101}}\right):4\)
\(A=\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\)
\(\Rightarrow3A=-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
\(\Rightarrow3A+A=4A\)
\(=\left(-1+\frac{1}{3}-...-\frac{1}{3^{100}}\right)+\left(\frac{-1}{3}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\right)\)
\(=-1+\frac{1}{3}-...-\frac{1}{3^{100}}-\frac{1}{3}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\)
\(=-1-\frac{1}{3^{101}}\)
\(\Rightarrow A=\frac{-1-\frac{1}{3^{101}}}{4}\)
Vậy \(A=\frac{-1-\frac{1}{3^{101}}}{4}\)
P=1/1.2.3.4 +1/2.3.4.5 +1/3.4.5.6 +...+1/97.98.99.100
3P=3/1.2.3.4 +3/2.3.4.5 +3/3.4.5.6 +...+3/97.98.99.100
3P=1/1.2.3-1/2.3.4+1/2.3.4-1/3.4.5+................+1/97.98.99-1/98.99.100
3P = 1/1.2.3 - 1/98.99.100
3P =( 98.99.100-1.2.3)/1.2.3.98.99.100
P=( 98.99.100-1.2.3)/1.2.3.98.99.100.3
P=(98.33.50-1)/98.99.100.3
P= 161699/2910600
cách làm của tui đúng nhất nhưng ko bít có giống cách ai ko
đặt S=1.2.3.4+2.3.4.5+3.4.5.6+...+97.98.99.100
5S=(5-0).1.2.3.4+(6-1).2.3.4.5+...+(101-96).97.98.99.100
5S=1.2.3.4.5-0+2.3.4.5.6-1.2.3.4.5+...+97.98.99.100.101-96.97.98.99.100
5S=97.98.99.100.101=9505049400
S=1901009880
1.2.3.4+2.3.4.5+3.4.5.6+...+97.98.99.100
4S=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100). 4
4S=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4S=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...98.99.100.101-97.98.99.100
4S=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98+99.100+101
4S=98.99.100.101
Vậy S = 98.99.100.101/4 = 24497550
A=1/3+1/9+1/27+....+1/72171
3A=1/3x3+1/9x3+1/27x3+....+1/72171x3
3A=1+1/3+1/9+1/27+....+1/24057
3A-A=(1+1/3+1/9+1/27+...+1/24057)-(1/3+1/9+1/27+...+1/72171)
3A-A=1+1/3+1/9+1/27+...+72171-1/3-1/9-1/27-....-1/72171
=1-1/72171
2A=72170/72171
A=72170/72171:2
A=36085/72171
Ta có : \(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\); \(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)
Mà \(\frac{3}{10^8-1}>\frac{3}{10^8-3}\Rightarrow A>B\)
=3.(1/1.2+1/2.3+...+1/299.300)
=3.(1-1/2+1/2-1/3+...+1/299-1/300)
=3.(1-1/300)
=3.299/300
=299/100
\(A=\frac{4-1}{1.2.3.4}+\frac{5-2}{2.3.4.5}+\frac{6-3}{3.4.5.6}+...+\frac{100-97}{97.98.99.100}\)
\(A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+\frac{1}{3.4.5}+\frac{1}{4.5.6}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\)
\(A=\frac{1}{1.2.3}-\frac{1}{98.99.100}\)