K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2019

ta có :

\(3A=-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)

\(\Rightarrow4A=-1-\frac{1}{3^{101}}\)

\(\Rightarrow4A=\frac{-3^{101}-1}{3^{101}}\)

\(\Rightarrow A=\left(\frac{-3^{101}-1}{3^{101}}\right):4\)

4 tháng 3 2019

\(A=\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\)

\(\Rightarrow3A=-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)

\(\Rightarrow3A+A=4A\)

 \(=\left(-1+\frac{1}{3}-...-\frac{1}{3^{100}}\right)+\left(\frac{-1}{3}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\right)\)

\(=-1+\frac{1}{3}-...-\frac{1}{3^{100}}-\frac{1}{3}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\)

\(=-1-\frac{1}{3^{101}}\)

\(\Rightarrow A=\frac{-1-\frac{1}{3^{101}}}{4}\)

Vậy \(A=\frac{-1-\frac{1}{3^{101}}}{4}\)

23 tháng 6 2016

\(A=\frac{4-1}{1.2.3.4}+\frac{5-2}{2.3.4.5}+\frac{6-3}{3.4.5.6}+...+\frac{100-97}{97.98.99.100}\)

\(A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+\frac{1}{3.4.5}+\frac{1}{4.5.6}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\)

\(A=\frac{1}{1.2.3}-\frac{1}{98.99.100}\)

11 tháng 8 2017

a, 1,5+1-0,75/2,5+5\3-1,25

=15\10+1-75\100/25\10+5\3-125\100

=7\4/35/12

25 tháng 9 2017

vào câu hỏi tương tự

25 tháng 9 2017

Đoạn sau không rõ, có phải là [1/2^2 - 1][1/3^2 - 1] ... [1/100^2 - 1] 
Nếu vậy thì làm như sau 
[1/2^2 - 1][1/3^2 - 1] ... [1/100^2 - 1] = 
= (1/2 - 1)(1/2 + 1)(1/3 - 1)(1/3 + 1) ... (1/100 - 1)(1/100 + 1) = 
= (-1/2).(3/2).(-2/3).(4/3) (-3/4).(5/4) ... (-98/99).(100/99).(-99/100)(101/100) 
Rút gọn lại (chú ý có tất cả 99 dấu trừ nhân với nhau) ta được 
= (-1/2).(101/100) = -101/200  

11 tháng 8 2017

A=1/3+1/9+1/27+....+1/72171

3A=1/3x3+1/9x3+1/27x3+....+1/72171x3

3A=1+1/3+1/9+1/27+....+1/24057

3A-A=(1+1/3+1/9+1/27+...+1/24057)-(1/3+1/9+1/27+...+1/72171)

3A-A=1+1/3+1/9+1/27+...+72171-1/3-1/9-1/27-....-1/72171

=1-1/72171

2A=72170/72171

A=72170/72171:2

A=36085/72171

29 tháng 4 2018

\(a,\left(4\frac{1}{2}-\frac{2}{5}x\right):1\frac{3}{4}=\frac{11}{14}\)

\(\Rightarrow\left(\frac{9}{2}-\frac{2}{5}x\right):\frac{7}{4}=\frac{11}{4}\)

\(\Rightarrow\left(\frac{9}{2}-\frac{2}{5}x\right)=\frac{11}{4}\cdot\frac{7}{4}\)

\(\Rightarrow\left(\frac{9}{2}-\frac{2}{5}x\right)=\frac{77}{16}\)

\(\Rightarrow\frac{9}{2}-\frac{2}{5}x=\frac{77}{16}\)

\(\Rightarrow-\frac{2}{5}x=\frac{77}{16}-\frac{9}{2}\)

\(\Rightarrow-\frac{2}{5}x=\frac{5}{16}\)

\(\Rightarrow x=\frac{5}{16}:\left(-\frac{2}{5}\right)\)

\(\Rightarrow x=-\frac{25}{32}\)

\(b,\frac{2}{3}\cdot x-\frac{2}{5}x=\frac{9}{3}\)

\(\Rightarrow x\left(\frac{2}{3}-\frac{2}{5}\right)=\frac{8}{3}\)

\(\Rightarrow x\cdot\frac{4}{15}=\frac{8}{3}\)

\(\Rightarrow x=\frac{8}{3}:\frac{4}{15}\)

\(\Rightarrow x=10\)

29 tháng 4 2018

\(c,\frac{-2}{3}|x|+1\frac{1}{2}=\frac{2}{5}\)

\(\Rightarrow\frac{-2}{3}|x|+\frac{3}{2}=\frac{2}{5}\)

\(\Rightarrow\frac{-2}{3}|x|=\frac{2}{5}-\frac{3}{2}\)

\(\Rightarrow\frac{-2}{3}|x|=-\frac{11}{10}\)

\(\Rightarrow|x|=\frac{-11}{10}:\frac{-2}{3}\)

\(\Rightarrow|x|=\frac{33}{20}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{33}{20}\\x=-\frac{33}{20}\end{cases}}\)

\(d,|2x-\frac{1}{3}|+\frac{1}{6}=\frac{3}{4}\)

\(\Rightarrow|2x-\frac{1}{3}|=\frac{3}{4}-\frac{1}{6}\)

\(\Rightarrow|2x-\frac{1}{3}|=\frac{7}{12}\)

\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{3}=\frac{7}{12}\\2x-\frac{1}{3}=-\frac{7}{12}\end{cases}\Rightarrow\orbr{\begin{cases}2x=\frac{11}{12}\\2x=-\frac{1}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{11}{24}\\x=-\frac{1}{8}\end{cases}}}\)

3 tháng 7 2017

Đăt A = \(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+......+\frac{1}{7^{100}}\)

\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.....+\frac{1}{7^{100}}\)

\(\Rightarrow7A-A=1-\frac{1}{7^{100}}\)

\(\Rightarrow6A=1-\frac{1}{7^{100}}\)

\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)

29 tháng 3 2017

\(B=-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\)

Suy ra \(3B=-1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-.....+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)

\(3B-B=-1-\frac{1}{3^{101}}\)hay \(2B=-1-\frac{1}{3^{101}}\)

Khi đó \(B=\frac{-1}{2}-\frac{1}{3^{101}.2}\)