Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì | x - 2001| > hoặc = 2001 - x
| x - 1| > hoặc = x - 1
Nên A = |x - 2001| + | x - 1| > hoặc = 2001 - x + x - 1 = 2000
=> A > hoặc = 2002
=> Để A có giá trị nhỏ nhất <=> A = 2002
Khi đó 2001 - x > hoặc = 0 nên x < hoặc = 2001 (1)
x - 1 > hoặc = 0 nên x > hoặc = 1 (2)
Từ (1) và (2) => 1 < hoặc = x < hoặc = 2001
Vậy A có GTNN là 2000 <=> 1 < hoặc = x < hoặc = 2001
a) A = 5-(x-2)2 \(\le\)5
<=> x-2 = 0
<=> x=2
b) B = -lx-2l-5 \(\le\)-5
<=> x-2 = 0
<=> x=2
c)C = 3-l2y-1l-lx-2l\(\le\)3
<=>\(\hept{\begin{cases}2y-1=0\\\text{x-2 = 0 }\end{cases}}\)
<=>\(\hept{\begin{cases}y=\frac{1}{2}\\x=2\end{cases}}\)
Bài 1:
\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)
\(\ge x-3+0+7-x=4\)
Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)
Vậy MinA=4 khi x=5
Bài 2:
\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)
\(\ge x-1+x-2+3-x+5-x=5\)
Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)