Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)
\(\ge x-3+0+7-x=4\)
Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)
Vậy MinA=4 khi x=5
Bài 2:
\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)
\(\ge x-1+x-2+3-x+5-x=5\)
Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)
Tìm min của biểu thức sau
a,biết x-y=3 A=lx-6l+ly+1l
b,x-y=2, B=l2x+1l+l2y+1l
c,2x+y=3,C=l2x+3l+ly+2l+2
a) A = 5-(x-2)2 \(\le\)5
<=> x-2 = 0
<=> x=2
b) B = -lx-2l-5 \(\le\)-5
<=> x-2 = 0
<=> x=2
c)C = 3-l2y-1l-lx-2l\(\le\)3
<=>\(\hept{\begin{cases}2y-1=0\\\text{x-2 = 0 }\end{cases}}\)
<=>\(\hept{\begin{cases}y=\frac{1}{2}\\x=2\end{cases}}\)
Bài 1:
a)|x-2|=x-2
<=>x-2=-(x-2) hoặc (x-2)
- Với x-2=-(x-2)
=>x-2=-x+2
=>x=2
- Với x-2=x-2.Ta thấy 2 vế cùng có số hạng giống nhau =>mọi \(x\in R\)đều thỏa mãn
b)|2x+3|=5x-1
=>2x+3=-(5x-1) hoặc 5x-1
- Với 2x+3=-(5x-1)
=>2x+3=-5x+1
=>x=-2/7 (loại)
- Với 2x+3=5x-1
=>x=4/3
Bài 2:
a)Ta thấy:\(\begin{cases}\left|x-2\right|\\\left|3+y\right|\end{cases}\ge0\)
\(\Rightarrow\left|x-2\right|+\left|3+y\right|\ge0\)
\(\Rightarrow A\ge0\)
Dấu = khi \(\begin{cases}\left|x-2\right|=0\\\left|3+y\right|=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2\\y=-3\end{cases}\)
Vậy MinA=0 khi x=2; y=-3
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) và dấu = khi \(ab\ge0\) ta có:
\(\left|x-2016\right|+\left|x-2017\right|\ge\left|x-2016+2017-x\right|=1\)
\(\Rightarrow B\ge1\)
Dấu = khi \(ab\ge0\)\(\Leftrightarrow\left(x-2016\right)\left(x-2017\right)\ge0\)\(\Leftrightarrow\begin{cases}\left(x-2016\right)\left(x-2017\right)\\2016\le x\le2017\end{cases}\)
\(\Leftrightarrow\begin{cases}x=2016\\x=2017\end{cases}\)
Vậy MinB=1 khi x=2016 hoặc 2017
a: TH1: x<-1
Pt sẽ là 3(2-x)-(-x-1)=x+5
=>6-3x+x+1=x+5
=>-3x+7=5
=>-3x=-2
=>x=2/3(loại)
TH2: -1<=x<2
Pt sẽ là 3(2-x)-x-1=x+5
=>6-3x-x-1=x+5
=>-4x+5=x+5
=>x=0(nhận)
TH3: x>=2
Pt sẽ là 3x-6-x-1=x+5
=>2x-7=x+5
=>x=12(nhận)
b: TH1: x<-2
Pt sẽ là 2-x-x-2=4-y^2
=>-2x=4-y^2
=>2x=y^2-4
=>2x-y^2=-4
TH2: -2<=x<2
Pt sẽ là 2-x+x+2=4-y^2
=>-y^2=0
=>y=0
TH3: x>=2
Pt sẽ là x-2+x+2=4-y^2
=>2x+y^2=4