K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2021

\(=\dfrac{1}{8}\cdot24^3-\dfrac{3}{2}\cdot24^2-2\cdot24=816\)

5 tháng 1 2022

BẠN CÓ THỂ GIẢI THÍCH KHÔNG

18 tháng 2 2020

chat vs t

18 tháng 2 2020

 Ta có x =7  

=>x+1=8

\(\Rightarrow\)\(A=x^{15}-8x^{14}+8x^{13}-8x^{12}+.......8x^2+8x-5\)

\(\Rightarrow x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...\left(x+1\right)x^2\)

\(+\left(x+1\right)x^5\)

\(\Rightarrow x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...-x^3-x^2+x-5\)

\(\Rightarrow x-5\Leftrightarrow A=7-5=2\Rightarrow A=2\)

Vậy A=2 khi x=7

9 tháng 12 2021

\(A=\dfrac{2x^2\left(3x-4y+2\right)}{x\left(3x+y\right)\left(3x-y\right)}=\dfrac{2x\left(3x-4y+2\right)}{\left(3x+y\right)\left(3x-y\right)}\\ A=\dfrac{2\left(3-8+2\right)}{\left(3+2\right)\left(3-2\right)}=\dfrac{2\left(-3\right)}{5}=\dfrac{-6}{5}\)

9 tháng 6 2021

a, ĐKXĐ: x≠±3

A=\(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{3-x}{x+3}.\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{3-x}{x-3}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{9-x^2}{x^2-9}+\dfrac{x^2-3x}{x^2-9}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{-3}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\dfrac{-1}{x^2}\)

b, Thay x=\(-\dfrac{1}{2}\) (TMĐKXĐ) vào A ta có:

\(\dfrac{-1}{\left(-\dfrac{1}{2}\right)^2}\)=-4

c, A<0 ⇔ \(\dfrac{-1}{x^2}< 0\) ⇔ x2>0 (Đúng với mọi x)

Vậy để A<0 thì x đúng với mọi giá trị (trừ ±3)

 

Bài 1:

\(D=-3x^2+x+15x-5-3\left(2x^2-5x+2\right)\)

\(=-3x^2+16x-5-6x^2+15x-6\)

\(=-9x^2+31x-11\)

\(=-9\cdot\dfrac{1}{9}+\dfrac{31}{3}-11\)

=-11-1+31/3=-12+31/3=-5/3

b: \(E=x^2+x-56-x^2+7x-10=8x-66\)

\(=-\dfrac{8}{5}-66=-\dfrac{338}{5}\)

c: \(F=-3\left(2x^2+x-16x-8\right)-\left(-3x^2+2x-15x+10\right)-4x^2+24x\)

\(=-6x^2+45x+24+3x^2+13x-10-4x^2+24x\)

\(=-4x^2+82x+14\)

\(=-4\cdot9-82\cdot3+14=-268\)

8 tháng 12 2021

ĐK: \(3x\ne\pm y;x\ne0\)

A = \(\dfrac{3x}{3x+y}-\dfrac{x}{3x-y}+\dfrac{2x}{\left(3x-y\right)\left(3x+y\right)}\)

\(\dfrac{3x\left(3x-y\right)-x\left(3x+y\right)+2x}{\left(3x-y\right)\left(3x+y\right)}=\dfrac{6x^2-4xy+2x}{\left(3x-y\right)\left(3x+y\right)}=\dfrac{2x\left(3x-2y+1\right)}{\left(3x-y\right)\left(3x+y\right)}\)

Thay x = 1; y=2, ta có:

A = \(\dfrac{2.1\left(3.1-2.2+1\right)}{\left(3.1-2\right)\left(3.1+2\right)}=0\)

9 tháng 11 2021

\(=\left(3x+y\right)^3=\left[3\left(-3\right)+5\right]^3=\left(-4\right)^3=-64\)

1 tháng 12 2021

`27x^3 +27x^2y + 9xy^2 + y^3`

`= (3x)^3+3.(3x)^2 . y + 3.3x.y^2 +y^3`

`=(3x+y)^3`

`= (3.-3+5)^3`

`= (-9+5)^3`

`=-64`

17 tháng 10 2016

\(ab\left(x-y\right)^3-8ab=ab\left[\left(x-y\right)^3-2^3\right]=ab\left(x-y-2\right)\left[\left(x-y\right)^2+2\left(x-y\right)+4\right]\)

\(36x^2-y^2+6y-9=36x^2-\left(y-3\right)^2=\left(6x-y+3\right)\left(6x+y-3\right)\)

\(8x^2+10x-3=0\)

\(8x^2-2x+12x-3=0\)

\(2x\left(4x-1\right)+3\left(4x-1\right)=0\)

\(\left(4x-1\right)\left(2x+3\right)=0\)

\(\left[\begin{array}{nghiempt}4x-1=0\\2x+3=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}4x=1\\2x=-3\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=\frac{1}{4}\\x=-\frac{3}{2}\end{array}\right.\)

\(\left(2x-5\right)^2-\left(x+4\right)^2=0\)

\(\left(2x-5+x+4\right)\left(2x-5-x-4\right)=0\)

\(\left(3x-1\right)\left(x-9\right)=0\)

\(\left[\begin{array}{nghiempt}3x-1=0\\x-9=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=\frac{1}{3}\\x=9\end{array}\right.\)

20 tháng 10 2016

còn bài cuối thì sao à pn