Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\log_{5^{-2}}5^{\frac{5}{4}}=-\frac{1}{2}.\frac{5}{4}.\log_55=-\frac{5}{8}\)
b) \(B=9^{\frac{1}{2}\log_22-2\log_{27}3}=3^{\log_32-\frac{3}{4}\log_33}=\frac{2}{3^{\frac{3}{4}}}=\frac{2}{3\sqrt[3]{3}}\)
c) \(C=\log_3\log_29=\log_3\log_22^3=\log_33=1\)
d) Ta có \(D=\log_{\frac{1}{3}}6^2-\log_{\frac{1}{3}}400^{\frac{1}{2}}+\log_{\frac{1}{3}}\left(\sqrt[3]{45}\right)\)
\(=\log_{\frac{1}{3}}36-\log_{\frac{1}{3}}20+\log_{\frac{1}{3}}45\)
\(=\log_{\frac{1}{3}}\frac{36.45}{20}=\log_{3^{-1}}81=-\log_33^4=-4\)
\(N=\log_{\frac{1}{3}}5\log_{25}\frac{1}{7}=\log_{3^{-1}}5\log_{5^5}3^{-3}=\left(-5\right)\left(-\frac{3}{2}\right).\log_35\log_53=\frac{15}{2}\)
Ta có :
\(2\log_45=\log_25\)
\(\log_{\sqrt{2}}\frac{4}{\sqrt{3}}=\log_2\frac{4}{\sqrt{3}}=\log_2\frac{16}{3}\)
\(\log_9\frac{1}{4}=\log_{3^2}\left(\frac{1}{2}\right)^2=\log_3\frac{1}{2}\)
Mà :
\(\begin{cases}\frac{1}{2}< \frac{\pi}{4}\Rightarrow\log_3\frac{1}{2}< \log_3\frac{\pi}{4}\\\log_3\frac{\pi}{4}< 0< \log_25\\5< \frac{16}{3}\Rightarrow\log_25< \log_2\frac{16}{3}\end{cases}\) \(\Rightarrow\log_3\frac{1}{2}< \log_3\frac{\pi}{4}< \log_25< \log_2\frac{16}{3}\)
Hay :
\(\log_9\frac{1}{4}< \log_3\frac{\pi}{4}< 2\log_45< \log_{\sqrt{2}}\frac{4}{\sqrt{3}}\)
Vậy thứ tự giảm dần là :
\(\log_{\sqrt{2}}\frac{4}{\sqrt{3}};2\log_45;\log_3\frac{\pi}{4};\log_9\frac{1}{4}\)
\(B=25^{\frac{1}{2}+\frac{1}{9}\log_{\frac{1}{2}}27+\log_{125}81}=\left(5^2\right)^{\frac{1}{2}+\frac{1}{9}\log_{5^{-1}}3^3+\log_{5^3}3^4}\)
\(=5^{1-\frac{2}{3}\log_53+\frac{8}{3}\log_53}=5^{1+2\log_53}=5.5^{\log_53^2}=5.9=45\)
\(E=16\left[\log_{3^{-2}}3^{\frac{3}{2}}\right]^2+23\log_{2^{\frac{9}{2}}}2^{\frac{5}{2}}-12\log_55^{-3}=16\left(-\frac{3}{4}\right)^2+9\frac{5}{9}-12\left(-3\right)=50\)
\(A=\log_{2013}\left\{\log_4\left(\log_2256\right)-\log_{0,25}\left[\log_9\left(\log_464\right)\right]\right\}=\log_{2013}\left\{\log_4\left(\log_22^8\right)-\log_{0,25}\left[\log_9\left(\log_44^3\right)\right]\right\}\)
\(=\log_{2013}\left\{\log_48-\log_{0,25}\log_93\right\}=\log_{2013}\left\{\log_{2^2}2^2-\log_{\left(\frac{1}{2}\right)^2}\frac{1}{2}\right\}\)
\(=\log_{2013}\left(\frac{3}{2}-\frac{1}{2}\right)=\log_{2013}1=0\)
Ta có :
\(\begin{cases}5>1;3>1\Rightarrow\log_53>0\\15>1;4>1\Rightarrow\log_{15}4>0\\0< \frac{1}{3}< 1;\frac{7}{2}>1\Rightarrow\log_{\frac{1}{3}}\frac{14}{5}< 0\\0< 0,3< 1;\frac{7}{2}>1\Rightarrow\log_{0,3}\frac{7}{2}< 0\end{cases}\)
\(\Rightarrow A=\frac{\log_53.\log_{15}4}{\log_{\frac{1}{3}}\frac{14}{5}\log_{0,3}\frac{7}{2}}>0\)
Theo công thức biến đổi có số ta có : \(\log_{a^n}x=\frac{\log_ax}{\log_aa^n}=\frac{1}{n}\log_ax\)
Từ đó ta có :
\(A=\frac{1}{\log_ax}+\frac{1}{\log_{a^2}x}+\frac{1}{\log_{a^3}x}+...+\frac{1}{\log_{a^n}x}\)
\(=\frac{1}{\log_ax}+\frac{2}{\log_ax}+\frac{4}{\log_ax}+...+\frac{n}{\log_ax}\)
\(=\frac{1+2+3+...+n}{\log_ax}=\frac{n\left(n+1\right)}{\log_ax}\)
Vậy \(A=\frac{1}{\log_ax}+\frac{1}{\log_{a^2}x}+\frac{1}{\log_{a^3}x}+...+\frac{1}{\log_{a^n}x}=\frac{n\left(n+1\right)}{\log_ax}\)
Ta có :
\(\log_62-\frac{1}{2}\log_{\sqrt{6}}5=\log_62-\log_65=\log_6\frac{2}{5}\)
\(\Rightarrow\left(\frac{1}{6}\right)^{\log_62-\frac{1}{2}\log_{\sqrt{6}}5}=\left(\frac{1}{6}\right)^{\log_6\frac{2}{5}}=\left(6^{-1}\right)^{\log_6\frac{2}{5}}=6^{\log_6\frac{2}{5}}=\frac{5}{2}=\sqrt[3]{\left(\frac{5}{2}\right)^3}=\sqrt[3]{\frac{125}{8}}\)
Mà :
\(\sqrt[3]{\frac{125}{8}}>\sqrt[3]{\frac{124}{8}}\Rightarrow\left(\frac{1}{6}\right)^{\log_62-\frac{1}{2}\log_{\sqrt{6}}5}>\sqrt[3]{\frac{31}{2}}\)
\(\Rightarrow B=\left(\frac{1}{6}\right)^{\log_62-\frac{1}{2}\log_{\sqrt{6}}5}-\sqrt[3]{\frac{31}{2}}>0^{ }\)
\(D=\log_{5^{-1}}\left(5^2\right)-3\log_{3^2}\left(3^{-1}\right)+4.\log_{2^{\frac{3}{2}}}2^6=-2+\frac{3}{2}+16=\frac{31}{2}\)