Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ ĐKXĐ: \(x>0\)
\(log_{5x}5-log_{5x}x+log_5^2x=1\)
\(\Leftrightarrow\dfrac{1}{log_55x}-\dfrac{1}{log_x5x}+log_5^2x=1\)
\(\Leftrightarrow\dfrac{1}{1+log_5x}-\dfrac{1}{1+log_x5}+log_5^2x-1=0\)
\(\Leftrightarrow\dfrac{1}{1+log_5x}-\dfrac{log_5x}{1+log_5x}+\left(log_5x-1\right)\left(log_5x+1\right)=0\)
\(\Leftrightarrow\dfrac{1-log_5x}{1+log_5x}-\left(1-log_5x\right)\left(1+log_5x\right)=0\)
\(\Leftrightarrow\left(1-log_5x\right)\left(\dfrac{1}{1+log_5x}-\left(1+log_5x\right)\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}1-log_5x=0\\\dfrac{1}{1+log_5x}=1+log_5x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}1-log_5x=0\\1+log_5x=1\\1+log_5x=-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\\x=\dfrac{1}{25}\end{matrix}\right.\)
2/ ĐKXĐ: \(x>0\)
\(log_5\left(5^x-1\right).log_{25}\left(5^{x+1}-5\right)=1\)
\(\Leftrightarrow log_5\left(5^x-1\right).log_{5^2}5\left(5^x-1\right)=1\)
\(\Leftrightarrow log_5\left(5^x-1\right)\left(1+log_5\left(5^x-1\right)\right)=2\)
\(\Leftrightarrow log_5^2\left(5^x-1\right)+log_5\left(5^x-1\right)-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}log_5\left(5^x-1\right)=1\\log_5\left(5^x-1\right)=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}5^x-1=5\\5^x-1=\dfrac{1}{25}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}5^x=6\\5^x=\dfrac{26}{25}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=log_56\\x=log_5\dfrac{26}{25}\end{matrix}\right.\)
3/ ĐKXĐ: \(x>0\)
\(2log_3^2x-log_3x.log_3\left(\sqrt{2x+1}-1\right)=0\)
\(\Leftrightarrow log_3x\left(2log_3x-log_3\left(\sqrt{2x+1}-1\right)\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}log_3x=0\Rightarrow x=1\\2log_3x-log_3\left(\sqrt{2x+1}-1\right)=0\left(1\right)\end{matrix}\right.\)
Xét (1): \(log_3x^2=log_3\left(\sqrt{2x+1}-1\right)\Leftrightarrow x^2=\sqrt{2x+1}-1\)
\(\Leftrightarrow x^2+1=\sqrt{2x+1}\Leftrightarrow x^4+2x^2+1=2x+1\)
\(\Leftrightarrow x^4+2x^2-2x=0\Leftrightarrow x\left(x^3+2x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x^3+2x-2=0\end{matrix}\right.\) ????
Pt bậc 3 kia có nghiệm rất xấu, chỉ giải được bằng công thức Cardano mà bậc phổ thông không học, nên bạn có chép đề sai không vậy?
Ta có:
\(\left(\frac{1}{4}\right)^{-\frac{3}{2}}=8\) ;
\(2\left(\frac{125}{27}\right)^{-\frac{2}{3}}=2.\frac{9}{25}=\frac{18}{25}\) ;
\(\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}=2\Rightarrow2^{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}}=2^2=4\)
\(\Rightarrow M=8-\frac{18}{25}+4=4\frac{18}{25}\)
Ta có \(\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2-\sqrt{3}}=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=2\)
Nên \(B=2^{2\left(-\frac{3}{2}\right)}-2\left(\frac{5}{3}\right)^{3\left(-\frac{2}{3}\right)}+2^2=2^3-2\left(\frac{3}{5}\right)^2+4=\frac{282}{25}\)
\(A=\log_3\left(\log_{2\sqrt{2}}\sqrt[3]{\sqrt{2}}\right)=\log_3\left(\log_{2^{\frac{3}{2}}}2^{\frac{1}{6}}\right)=\log_3\left(\frac{1}{6}.\frac{2}{3}\right)=\log_33^{-2}=-2\)
\(A=\left(3\sqrt{3}\right)^{\frac{4}{3}}+\left(\frac{1}{16}\right)^{\frac{3}{4}}+2\left(\frac{8}{27}\right)^{\frac{2}{3}}\)
\(A=\left(3\sqrt{3}\right)^{\frac{4}{3}}+55+\frac{32}{3}\)
\(A=\left(3\sqrt{3}\right)^{\frac{4}{3}}+\frac{197}{3}\)
\(A=243+\frac{197}{3}\)
\(A=\frac{926}{3}\)
Ta có \(A=3^{\frac{3}{2}.\frac{4}{3}}+\left(\frac{1}{2}\right)^{4.\frac{3}{4}}+2\left(\frac{2}{3}\right)^{3.\frac{2}{3}}=3^2+\left(\frac{1}{2}\right)^3+2\left(\frac{2}{3}\right)^2=\frac{721}{72}\)
Điều kiện :
\(\log_{\frac{1}{5}}\left(\log_5\frac{x^2+1}{x+3}\right)\ge0\)
\(\Leftrightarrow0< \log_{\frac{1}{5}}\left(\log_5\frac{x^2+1}{x+3}\right)\le1\)
\(\Leftrightarrow\log_51< \log_5\frac{x^2+1}{x+3}\le\log_55\)
\(\Leftrightarrow1< \frac{x^2+1}{x+3}\le5\)\(\Leftrightarrow\begin{cases}\frac{x^2-x-2}{x+3}>0\\\frac{x^2-5x-14}{x+3}\le0\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-3< x< -1\\x>2\end{array}\right.\) và \(\left[\begin{array}{nghiempt}x< -3\\-2\le x\le7\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-2\le x< -1\\2< x\le7\end{array}\right.\)
Vậy tập xác định là D = [-2;-1) U (2;7]
Ta có : \(1+\left(\frac{x^4-1}{2x^2}\right)^2=\frac{x^8+2x^4+1}{4x^4}\) nên \(1+\sqrt{1+\left(\frac{x^4-1}{2x^2}\right)^2}=1+\frac{x^4+1}{2x^2}=\frac{\left(x^2+1\right)^2}{2x^2}\)
Do đó \(N=\frac{x^2+1}{x\sqrt{2}}\), thay \(x=\frac{1}{\sqrt{2}}\left(2^{\sqrt{2}}-2^{-\sqrt{2}}\right)\) vào ta được :
\(N=\frac{\frac{1}{2}\left(2^{\sqrt{2}}+2^{-\sqrt{2}}-2\right)+1}{\frac{1}{2}\left(2^{\sqrt{2}}+2^{-\sqrt{2}}\right)}=\frac{2^{2\sqrt{2}}+2^{-2\sqrt{2}}}{2^{\sqrt{2}}+2^{-\sqrt{2}}}\)
\(y=2^{\sqrt{\left|x-3\right|-\left|8-x\right|}}+\sqrt{\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}}\)
Điều kiện : \(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\\frac{-\log_{0,5}\left(x-1\right)}{\sqrt{x^2-2x+8}}\ge0\end{cases}\)
\(\Leftrightarrow\begin{cases}\left|x-3\right|\ge\left|8-x\right|\\x^2-2x-8>0\\\log_{0,5}\left(x-1\right)\le0\end{cases}\) \(\Leftrightarrow\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x^2-2x-8>0\\x-1\ge1\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ge\frac{11}{2}\\x< -2;x>4\\x\ge2\end{cases}\)
\(\Leftrightarrow x\ge\frac{11}{2}\) là tập xác định của hàm số
Ta có :
\(M=\frac{7\ln\left(\sqrt{2}+1\right)^2-64\ln\left(\sqrt{2}+1\right)-50\ln\left(\sqrt{2}+1\right)^{-1}+2}{-3lg5-lg\left(10^{-1}.2^3\right)+6lg\left(10^{-\frac{1}{3}}.2^{\frac{2}{3}}\right)+4lg\left(10.5\right)}\)
\(=\frac{2}{lg5+1-3lg2-2+4lg2+4}=\frac{1}{2}\)
\(E=16\left[\log_{3^{-2}}3^{\frac{3}{2}}\right]^2+23\log_{2^{\frac{9}{2}}}2^{\frac{5}{2}}-12\log_55^{-3}=16\left(-\frac{3}{4}\right)^2+9\frac{5}{9}-12\left(-3\right)=50\)