Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt VT = K
Coi K là một đa thức theo biến x. Rõ ràng sau khi khai triển, đưa về dạng chính tắc, K sẽ là đa thức bậc hai đối với biến x.
Vì vậy giả sử \(K\left(x\right)=Ax^2+Bx+C\)
- Cho x = -a: \(Aa^2-Ba+C=1\)(1)
- Cho x = -b: \(Ab^2-Bb+C=1\)(2)
- Cho x = -c: \(Ac^2-Bc+C=1\)(3)
Lấy (1) - (2): \(A\left(a^2-b^2\right)-B\left(a-b\right)=0\)(4)
Vì a - b khác 0 \(\Rightarrow A\left(a+b\right)-B=0\)(5)
Lấy (4) - (5),ta được: \(A\left(a-c\right)=0\Rightarrow A=0\)(do a - c khác 0)
Từ (4) suy ra B = 0, do đó C = 1
Vậy K = 1 hay \(\frac{\left(x-a\right)\left(x-c\right)}{\left(c-a\right)\left(c-b\right)}+\frac{\left(x-a\right)\left(x-c\right)}{\left(b-a\right)\left(b-c\right)}+\frac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}=1\)(đpcm)
Ta có: \(a.\left(y+z\right)=b.\left(x+z\right)=c.\left(x+y\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
Từ \(\left(1\right);\left(2\right)và\left(3\right)\Rightarrow\frac{y-z}{a.\left(b-c\right)}=\frac{z-x}{b.\left(c-a\right)}=\frac{x-y}{c.\left(a-b\right)}\left(đpcm\right).\)
Chúc bạn học tốt!