K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2019

\(=\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)\left(1-\frac{1}{5^2}\right)...\left(1-\frac{1}{50^2}\right)\)

\(=\frac{8}{3\cdot3}\cdot\frac{15}{4\cdot4}\cdot\frac{24}{5\cdot5}\cdot....\cdot\frac{2499}{50\cdot50}\)

\(=\frac{\left(2\cdot4\right)\left(3\cdot5\right)\left(4\cdot6\right)...\left(49\cdot51\right)}{\left(3\cdot3\right)\left(4\cdot4\right)\left(5\cdot5\right)...\left(50\cdot50\right)}\)

\(=\frac{\left(2\cdot3\cdot4\cdot...\cdot49\right)\left(4\cdot5\cdot6\cdot...\cdot51\right)}{\left(3\cdot4\cdot5\cdot...\cdot50\right)\left(3\cdot4\cdot5\cdot...\cdot50\right)}\)

\(=\frac{2\cdot51}{50\cdot3}\)

9 tháng 2 2018

Cần lắm ko

9 tháng 2 2018

Đỗ Ngọc Hải cần gấp

10 tháng 11 2015

A = \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}}{\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}}{\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(\frac{3}{47}+1\right)+...+\left(\frac{48}{2}+1\right)+\frac{50}{50}}\)

A = \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}}{\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+\frac{50}{50}}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}}{\left(\frac{1}{49}+\frac{1}{48}+\frac{50}{47}+...+\frac{1}{2}+\frac{1}{50}\right).50}=\frac{1}{50}\)

 

10 tháng 11 2015

\(A=\frac{T}{M}\)

\(M=\frac{1}{49}+1+\frac{2}{48}+1+\frac{3}{47}+1+.........+\frac{48}{2}+1+1\)

\(=\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+.........+\frac{50}{2}+1\)

\(=50.\left(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+......+\frac{1}{2}+\frac{1}{50}\right)=50.T\)

\(A=\frac{T}{50T}=\frac{1}{50}\)

\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+..+\frac{1}{1+2+3+...+50}\)

Ta có :

\(A=\frac{2}{2\left(1+2\right)}+\frac{2}{2\left(1+2+3\right)}+...+\frac{2}{2\left(1+2+..+50\right)}\)

\(A=\frac{2}{6}+\frac{2}{12}+...+\frac{2}{2550}\)

\(A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{50.51}\)

\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\right)\)

\(A=2\left(\frac{1}{2}-\frac{1}{51}\right)\)

\(A=2\times\frac{49}{102}\)

\(A=\frac{49}{51}\)

16 tháng 5 2017

đề bài mk chỉ cho 50 thôi ko có 51 đâu

nên mk cho bạn 1k thôi nhé