K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

B = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2015.2016.2017}\)
=) 2B = \(2.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2015.2016.2017}\right)\)
\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2015.2016.2017}\)
\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2015.2016}-\frac{1}{2016.2017}\)
\(\frac{1}{1.2}-\frac{1}{2016.2017}=\frac{1}{2}.\left(1-\frac{1}{1008.2017}\right)=\frac{1}{2}.\left(1-\frac{1}{2033136}\right)\)
\(\frac{1}{2}.\frac{2033135}{2033136}=\frac{1}{4066272}\)
=) B = \(\frac{1}{4066272}:2=\frac{1}{4066272}.\frac{1}{2}=\frac{1}{8132544}\)

11 tháng 7 2017

B = 1(1/1 - 1/2 - 1/3 + 1/2 - 1/3 - 1/4 + ...+ 1/2015 - 1/2016 - 1/2017)

B = 1( 1/1 - 1/2017)

B = 1.2016

B = 2016

Mà em nói nhỏ nghe nè,đây không phải là toán lớp 9 đâu,...mà là ......toán lớp 6 thôi !

11 tháng 2 2018

\(S=\left(\frac{3-1}{1.2.3}\right)+\left(\frac{4-2}{2.3.4}\right)+...+\left(\frac{2018-2016}{2016.2017.2018}\right)\)

\(S=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+..+\frac{1}{2016.2017}-\frac{1}{2017.2018}\right)\)

\(S=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2017.2018}\right)\)

Còn lại tự tính nha bn 

27 tháng 9 2015

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2013.2014.2015}=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{2013.2014.2015}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4058210}\right)=\frac{1}{2}.\frac{2029104}{4058210}=\frac{1014552}{4058210}\)

27 tháng 9 2015

bài thi cấp huyện của trường TH Quỳnh Bá

20 tháng 10 2018

Lời giải: Sử dụng hằng đẳng thức \(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)  ta có:

Sn=\(\frac{1}{2}\left[\frac{1}{1\times2}-\frac{1}{2\times3}\right]+\frac{1}{2}\left[\frac{1}{2\times3}-\frac{1}{3\times4}\right]+...\)\(+\frac{1}{2}\left[\frac{1}{\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)

\(=\frac{1}{2}\left[\frac{1}{1\times2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]=\frac{n\left(n+3\right)}{4\left(n+1\right)\left(n+2\right)}\)

20 tháng 10 2018

\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n.\left(n+1\right).\left(n+2\right)}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n.\left(n+1\right)}-\frac{1}{\left(n+1\right).\left(n+2\right)}\)

\(=\frac{1}{2}-\frac{1}{\left(n+1\right).\left(n+2\right)}\)

31 tháng 5 2017

= 10,000999

2 tháng 11 2018

Toán máy tính nha!: 

\(P\left(x\right)=\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}\left(\text{ }\text{Đề của bn thiếu vài chỗ}\right)\)

\(=\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}\)

\(=\frac{1}{x}-\frac{1}{x+5}=\frac{x+5-x}{x\left(x+5\right)}=\frac{5}{x\left(x+5\right)}\)

đề ko rõ!! 

còn lại thì thay vào 

2 tháng 9 2016

Ta có :

\(x^3+x^2+x=-\frac{1}{3}\Leftrightarrow3x^3+3x+1=0\)

\(\Leftrightarrow\left(x+1\right)^3+2x^3=0\Leftrightarrow\left(x+1\right)^3=-2x^3\)

\(\Leftrightarrow\left(x+1\right)=-x\sqrt[3]{2}\Leftrightarrow x=-\frac{1}{1+\sqrt[3]{2}}=\frac{\sqrt[3]{4}-\sqrt[3]{2}+1}{3}\)

6 tháng 5 2017

Tinh vế sau được 1502/6175

Tổng đuợc 17+1502/6176

Tính tay ta dc: 17.6175+1502/6175=106477/6175