Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}a//b\\a\perp AB\end{matrix}\right.\Rightarrow b\perp AB\Rightarrow\widehat{B_1}=90^0\\ a//b\Rightarrow\widehat{D_1}+\widehat{C}=180^0\left(2.góc.trong.cùng.phía\right)\\ \Rightarrow\widehat{D_1}=180^0-130^0=50^0\)
Ta có: a//b
Mà \(a\perp AB\)
=> \(b\perp AB\Rightarrow\widehat{B_1}=90^0\)
Ta có: a//b
\(\Rightarrow\widehat{D_1}+\widehat{DCB}=180^0\)(trong cùng phía)
\(\Rightarrow\widehat{D_1}=180^0-\widehat{DCB}=180^0-130^0=50^0\)
\(a,\widehat{M}=90^o\\ \Rightarrow\widehat{N}+\widehat{P}=90^o\\ M\text{à}:\widehat{N}:\widehat{P}=3:2\Rightarrow\widehat{N}=1,5\widehat{P}\\ \Rightarrow1,5\widehat{P}+\widehat{P}=90^o\\ \Leftrightarrow\widehat{P}=36^o;\widehat{N}=54^o\)
\(b,\widehat{M}+\widehat{N}+\widehat{P}=180^o\\ M\text{à}:\widehat{M}=80^o\\ \Rightarrow\widehat{N}+\widehat{P}=100^o\\ M\text{à}:\widehat{N}+2\widehat{P}=120^o\\ \Rightarrow\widehat{P}=20^o;\widehat{N}=80^o\\ c,\widehat{M}:\widehat{N}:\widehat{P}=2:1:6\\ M\text{à}:\widehat{M}+\widehat{N}+\widehat{P}=180^o\\ \Leftrightarrow9\widehat{N}=180^o\\ \Leftrightarrow\widehat{N}=20^o\\ \Rightarrow\widehat{M}=2\widehat{N}=2.20^o=40^o\\ \widehat{P}=6.\widehat{N}=6.20^o=120^o\)
Trước khi làm mình có lưu ý là mình sử dụng H luôn cho câu b nhé, dù ở câu c mới xuất hiện.
a/ Xét \(\Delta ABD\)vuông tại \(D\)có:
\(AD^2+BD^2=AB^2\left(pytago\right)\)
\(AD^2+8^2=10^2\)
\(AD^2=10^2-8^2=100-64=36\)
\(\Rightarrow AD=\sqrt{36}=6\left(cm\right)\)
b/ Xét tam giác ABC có 2 đường cao BD;CE cắt nhau tại H => H là trực tâm tam giác ABC
=> AH là đường cao thứ 3 (Vậy thôi đủ xài)
=> AH cũng là đường phân giác vì tam giác ABC cân tại A
Xét \(\Delta AEH\)và \(\Delta ADH\)có:
\(\hept{\begin{cases}AH:chung\\\widehat{EAH}=\widehat{DAH}\left(cmt\right)\\\widehat{AEH}=\widehat{ADH}=90^0\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta AEH=\Delta ADH\left(g.c.g\right)\)
\(\Rightarrow AE=AD\)
Xét \(\Delta AEC\)và \(\Delta ABD\)có:
\(\hept{\begin{cases}AE=AD\left(cmt\right)\\\widehat{AEC}=\widehat{ADB}=90^0\left(gt\right)\\\widehat{BAC}:chung\end{cases}}\)
\(\Rightarrow\Delta AEC=\Delta ADB\left(g.c.g\right)\)
\(\Rightarrow CE=BD\)
c/ (đã chứng minh câu b)
d/ Vì tam giác AEC = tam giác ADB
=> \(\widehat{ACE}=\widehat{ABD}\)
Mà: \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
\(\Rightarrow\widehat{DBC}=\widehat{ECB}\)
\(\Rightarrow\Delta BHC\)cân tại \(H\)
e/ Xét \(\Delta AHD\)vuông tại \(H\)có:
\(AD^2+HD^2=AH^2\left(pytago\right)\)
\(6^2+5^2=AH^2\)(vì 36 + 25 = 61)
\(\Rightarrow AH=\sqrt{61}\approx7,8\left(cm\right)\)