K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: ΔADH vuông tại H(AH\(\perp\)HD tại H)

nên \(\widehat{DAH}+\widehat{ADH}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{DAH}+\widehat{BDA}=90^0\)(1)

Ta có: \(\widehat{CAD}+\widehat{BAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB,AC)

nên \(\widehat{KAD}+\widehat{BAD}=90^0\)(2)

Xét ΔBAD có BA=BD(gt)

nên ΔBAD cân tại B(Định nghĩa tam giác cân)

Ta có: ΔBAD cân tại B(cmt)

nên \(\widehat{BAD}=\widehat{BDA}\)(hai góc ở đáy)(3)

Từ (1), (2) và (3) suy ra \(\widehat{KAD}=\widehat{HAD}\)(đpcm)

b) 

Xét ΔKAD vuông tại K và ΔHAD vuông tại H có 

AD chung

\(\widehat{KAD}=\widehat{HAD}\)(cmt)

Do đó: ΔKAD=ΔHAD(cạnh huyền-góc nhọn)

⇒AK=AH(hai cạnh tương ứng)

mà \(AK=\sqrt{7}cm\)

nên \(AH=\sqrt{7}cm\)

Áp dụng định lí Pytago vào ΔAHD vuông tại H, ta được:

\(AD^2=AH^2+HD^2\)

\(\Leftrightarrow AD^2=\left(\sqrt{7}\right)^2+3^2=16\)

hay AD=4(cm)

Vậy: AD=4cm

1 tháng 5 2016

b)

theo câu a, ta có tam giác AHD=ACD(CH-GN)

=> AH=AK(1)

tam giác DKC vuông tại K=> DC là cạnh lớn nhất trong tam giác DCK

=> DC>KC(2)

ta có: BA=BD(gt)(3)

từ (1)(2)(3)=> AB+AC<BC+AH

bạn, mk thi hsg gặp câu này làm đc điểm tuyệt đối đó

1 tháng 5 2016

bài 1:

a)

kẻ DK_|_AC tại K

ta có AB=BD=> tam giác ABD cân tại B=> BAD=BDA

ta có:

BAD+DAC=90

DAC+ADK=90

=> BAD=ADK mà BAD=BDA=> BDA=ADK

xét 2 tam giác vuông HAD và KAD có:

AD(chung)
BDA=ADK(cmt)

=> tam giác HAD=KAD(CH-GN)

=> HAD=DAC

=> AD là phân giác của HAC

AH
Akai Haruma
Giáo viên
6 tháng 3 2021

Lời giải:

a) 

$\widehat{B}=\widehat{C}(1)$

$\widehat{AHB}=\widehat{AHC}=90^0(2)$ (do $AH\perp BC$)

$\widehat{B}+\widehat{AHB}+\widehat{BAH}=\widehat{C}+\widehat{AHC}+\widehat{CAH}=180^0(3)$ (tính chất tổng 3 góc trong 1 tam giác)

Từ $(1);(2);(3)\Rightarrow \widehat{BAH}=\widehat{CAH}$ (đpcm)

b) 

Vì $\widehat{B}=\widehat{C}$ nên tam giác $ABC$ cân tại $A$

$\Rightarrow $AB=AC$. Mà $AL=AK$ nên $AB-AL=AC-AK$ hay $BL=CK$

Xét tam giác $BKC$ và $CLB$ có:

$BC$ chung

$KC=LB$ (cmt)

$\widehat{B}=\widehat{C}$ (gt)

$\Rightarrow \triangle BKC=\triangle CLB$ (c.g.c)

$\Rightarrow \widehat{BKC}=\widehat{CLB}$ 

 

a) Xét ΔABC có \(\widehat{ABC}=\widehat{ACB}\)(gt)

nên ΔABC cân tại A(Định lí đảo của tam giác cân)

hay AB=AC

Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(cmt)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

31 tháng 1 2019

a) Xét \(\Delta ABH\)và \(\Delta AHC\)có:
AB = AC (gt)
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
\(\Rightarrow\Delta ABH=\Delta AHC\left(Ch-gn\right)\)
\(\Rightarrow HB=HC\)(2 cạnh tương ứng)
\(\Rightarrow\widehat{BAH}=\widehat{HAC}\)
b) Ta có : HB=HC (cma ) 
Mà HB + HC = BC 
=> HB = HC = 4 cm
Xét \(\Delta ABH\)vuông tại H có : AB2=HA2+BH2 (Pytago)
=> AH2 = AB2 - HB2 
=> AH2 = 52 - 42 = 9 
=> AH = 3 (cm)
c) Xét \(\Delta HBD\)và \(\Delta HEC\)có:
HB = HC (cma)
\(\widehat{HDB}=\widehat{HEC}\left(=90^o\right)\)
=> \(\Delta HBD=\Delta HEC\left(Ch-gn\right)\)
=> HD = HC ( 2 cạnh tương ứng)
=> \(\Delta HDE\)cân tại H 

1 tháng 2 2019

Góc BAH =góc HAC là 2 góc tương ứng 

HẢ BN

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔBAC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

mà BH+CH=BC(H nằm giữa B và C)

nên \(BH=CH=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=BH^2+AH^2\)

\(\Leftrightarrow AH^2=AB^2-BH^2=5^2-4^2=9\)

hay AH=3(cm)

Vậy: AH=3cm

b) Xét ΔDBH vuông tại D và ΔECH vuông tại E có 

BH=CH(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔDBH=ΔECH(Cạnh huyền-góc nhọn)

Suy ra: HD=HE(hai cạnh tương ứng)

Xét ΔHDE có HD=HE(cmt)

nên ΔHDE cân tại H(Định nghĩa tam giác cân)