Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{49.50.51}\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-....-\frac{1}{50.51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2550}\right)=\frac{637}{2550}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{49.50.51}\)
ta có dạng tổng quát
\(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)-\left(n+2\right)}=\frac{2}{n\left(n+1\right)\left(n+2\right)}\) bạn quy đồng ra rồi tính nha
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{49.50}-\frac{1}{50.51}\)
\(2A=\frac{1}{1.2}-\frac{1}{50.51}\)
\(2A=\frac{637}{1275}\)
\(A=\frac{637}{2550}\)
A=1/2{(1/1*2-1/2*3)+(1/2*3-1/3*4)+(1/3*4-1/4*5)+...+(1/18*19-1/19*20)}
=1/2{1/1*2-1/19*20}
=1/2*189/380
=189/760
vì 189/760<1/4
nên A=...<1/4
n+13 \(⋮\) n+1
=>( n+1)+12 \(⋮\) n+1
=> 12 \(⋮\) n+1
=> n+1 \(\in\) Ư(12)
=> Ư(12) = { 1; 2; 3; 4; 6; 12}
=> n = { 0; 1; 2; 3; 5; 11}
Ta có: \(n+13⋮n+1\)
\(\Rightarrow\left(n+1\right)+12⋮n+1\)
\(\Rightarrow12⋮n+1\)
\(\Rightarrow n+1\in\left\{-1;1;-2;2;-3;3;-4;4;-6;6;-12;12\right\}\)
+) \(n+1=-1\Rightarrow n=-2\)
+) \(n+1=1\Rightarrow n=0\)
+) \(n+1=-2\Rightarrow n=-3\)
+) \(n+1=2\Rightarrow n=1\)
+) \(n+1=-3\Rightarrow n=-4\)
+) \(n+1=3\Rightarrow n=2\)
+) \(n+1=-4\Rightarrow n=-5\)
+) \(n+1=4\Rightarrow n=3\)
+) \(n+1=-6\Rightarrow n=-7\)
+) \(n+1=6\Rightarrow n=5\)
+) \(n+1=-12\Rightarrow n=-13\)
+) \(n+1=12\Rightarrow n=11\)
Vậy \(n\in\left\{-2;0;-3;1;-4;2;-5;3;-7;5;-13;11\right\}\)
Lời giải:
Trước tiên, để PT có 2 nghiệm phân biệt thì $\Delta'=m^2-(m^2-m+1)>0$
$\Leftrightarrow m>1$
Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m^2-m+1\end{matrix}\right.\)
Khi đó:
$|x_1-x_2|=2$
$\Leftrightarrow |x_1-x_2|^2=4$
$\Leftrightarrow (x_1-x_2)^2=4$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=4$
$\Leftrightarrow (2m)^2-4(m^2-m+1)=4$
$\Leftrightarrow m=2$ (thỏa mãn)
Vậy $m=2$
\(x^2-2mx+m^2-m+1=0\)
\(\Delta'=m^2-m^2+m-1=m-1\)
Để pt có 2 n0 pb <=> \(\Delta'>0\Leftrightarrow m>1\)
Theo Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{matrix}\right.\)
Ta có \(\left|x_1-x_2\right|=2\Rightarrow\left(x_1-x_2\right)^2=4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)
\(\Leftrightarrow4m^2-4m^2+4m-4=4\)
\(\Leftrightarrow m=0\left(l\right)\)
Vậy ko tồn tại m để....
2^1 + 2^2 + 2^3 +...+ 2^2010
= (2^1 + 2^2) + (2^3 + 2^4) + ... + (2^2009 + 2^2010)
= 2.(1 + 2) + 2^3.(1 + 2) + ... + 2^2009.(1 + 2) = 2.3 + 2^3.3 + ... + 2^2009.3 = 3.(2 + 2^3 + ... + 2^2009) => 2^1 + 2^2 + 2^3 +...+ 2^2010 chia hết cho 3 2^1 + 2^2 + 2^3 +...+ 2^2010 = (2^1 + 2^2 + 2^3) + ... + (2^2008 + 2^2009 + 2^2010) = 2.( 1 + 2 + 2^2) + ... + 2^2008.(1 + 2 + 2^2) = 2.7 + ... + 2^2008. 7 => 2^1 + 2^2 + 2^3 +...+ 2^2010 chia hết cho 7
\(B=1.2.3+2.3.4+.........+\left(n-1\right)n\left(n+1\right)\)
\(\Leftrightarrow4B=1.2.3.4+2.3.4.4+........+\left(n-1\right)n\left(n+1\right).4\)
\(\Leftrightarrow4B=\left(4-0\right).1.2.3+\left(5-1\right).2.3.4+.........+\left[\left(n+2\right)-\left(n-2\right)\right]\left(n-1\right)n\left(n+1\right)\)
\(\Leftrightarrow4B=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+.......+\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-2\right)\left(n-1\right)n\left(n+1\right)\)
\(\Leftrightarrow4B=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(\Leftrightarrow B=\dfrac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)
Ta có:
B=1.2.3+2.3.4+...+(n-1)n(n+1)
=> 4B=1.2.3.4+2.3.4.(5-1)+...+(n-1)n(n+1)((n+2)-(n-2))
=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+(n-1)n(n+1)(n+2)-(n-2)(n-1)n(n+1)
=(n-1)n(n+1)(n+2)
=> B=\(\dfrac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)
Vậy B=\(\dfrac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)