K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2020

Bài làm

\(\frac{\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)}{\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}\right)}\)

\(=\frac{\left(\frac{2}{2}+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}\right)}{\left(\frac{2}{2}-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}\right)}\)

\(=\frac{\frac{1}{2}\left(2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}\right)}{\frac{1}{2}\left(2-1+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}\right)}\)

\(=\frac{3+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}}{1+\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}}\)

\(=\frac{\frac{24}{8}+\frac{4}{8}+\frac{2}{8}+\frac{1}{8}}{\frac{8}{8}+\frac{4}{8}-\frac{2}{8}+\frac{1}{8}}\)

\(=\frac{31}{8}\div\frac{11}{8}\)

\(=\frac{31}{8}\cdot\frac{8}{11}\)

\(=\frac{31}{11}\)

P/S: Trông không thuận tiện lắm :/

12 tháng 12 2020

Hawy tính giúp mình nha mình cho đúng

23 tháng 7 2016

\(A=\frac{1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}}{1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}}\)

Đặt tử số là B, mẫu số là C

\(B=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)

\(2B=2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\)

\(2B-B=\left(2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)\)

\(B=2-\frac{1}{16}\)

\(B=\frac{32}{16}-\frac{1}{16}=\frac{31}{16}\)

\(C=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}\)

\(2C=2-1+\frac{1}{2}-\frac{1}{4}+\frac{1}{8}\)

\(2C+C=\left(2-1+\frac{1}{2}-\frac{1}{4}+\frac{1}{8}\right)+\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}\right)\)

\(3C=2+\frac{1}{16}\)

\(3C=\frac{32}{16}+\frac{1}{16}\)

\(3C=\frac{33}{16}\)

\(C=\frac{33}{16}:3=\frac{11}{16}\)

=> \(A=\frac{B}{C}=\frac{31}{16}:\frac{11}{16}=\frac{31}{16}.\frac{16}{11}=\frac{31}{11}\)

14 tháng 9 2016

kết quả là 1/1024

31 tháng 10 2016

\(P=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\left(1-\frac{1}{1+2+3+4}\right)...\left(1-\frac{1}{1+2+3+...+2014}\right)\)

\(P=\frac{\left(1+2\right).2:2-1}{\left(1+2\right).2:2}.\frac{\left(1+3\right).3:2-1}{\left(1+3\right).3:2}.\frac{\left(1+4\right).4:2-1}{\left(1+4\right).4:2}...\frac{\left(1+2014\right).2014:2-1}{\left(1+2014\right).2014:2}\)

\(P=\frac{2}{2.3:2}.\frac{5}{3.4:2}.\frac{9}{4.5:2}...\frac{2029104}{2014.2015:2}\)

\(P=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}...\frac{2013.2016}{2014.2015}\)

\(P=\frac{1.2.3...2013}{2.3.4...2014}.\frac{4.5.6...2016}{3.4.5...2015}\)

\(P=\frac{1}{2014}.\frac{2016}{3}=\frac{1}{2014}.672=\frac{336}{1007}\)