Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
\(D=\frac{6}{3,5}+\frac{6}{5.7}+...+\frac{6}{21.23}\)
\(D=3.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{21.23}\right)\)
\(D=3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{21}-\frac{1}{23}\right)\)
\(D=3.\left(\frac{1}{3}-\frac{1}{23}\right)\)
\(D=3.\frac{20}{69}\)
\(D=\frac{20}{23}\)
Học tốt
Bài làm
\(D=\frac{6}{3.5}+\frac{6}{5.7}+...+\frac{6}{21.23}\)
\(D=3.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{21.23}\right)\)
\(D=3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{21}-\frac{1}{23}\right)\)
\(D=3.\left(\frac{1}{3}-\frac{1}{23}\right)\)
\(D=3.\frac{20}{69}\)
\(D=\frac{20}{23}\)
\(E=\frac{20}{11.13}+\frac{20}{13.15}+\frac{20}{15.17}+...+\frac{20}{53.55}\)
\(E=10.\left(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{2}{53.55}\right)\)
\(E=10.\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{53}-\frac{1}{55}\right)\)
\(E=10.\left(\frac{1}{11}-\frac{1}{55}\right)\)
\(E=10.\frac{4}{55}\)
\(E=\frac{8}{11}\)
\(G=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)
\(G=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(G=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(G=\frac{1}{1}-\frac{1}{100}\)
\(G=\frac{99}{100}\)
Nhớ k cho m nha
=> 11/12 + 1/12 - 1/23 + 1/23 - 1/34 + ..... + 1/89 - 1/100 + x = 5/3
=> 11/12 + 1/12 - 1/100 + x = 5/3
=> 99/100 + x = 5/3
=> x = 5/3 - 99/100 = 203/300
Tk mk nha
D = $\frac{2}{3}.\frac{5}{6}.\frac{9}{10}. ... .\frac{799}{780}$
= $\frac{2.2}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}. ... .\frac{38.41}{39.40}$
= $\frac{2.2}{2.3}.\frac{2.3. ... .38}{3.4. ... 39}.\frac{5.6. ... .41}{4.5. ... .40}$
= $\frac{2}{3}.\frac{2}{39}.\frac{41}{4}$
= $\frac{41}{3.39}$
D = \(\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}.....\frac{779}{780}\)
= \(\frac{2.2}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{4.7}{5.6}.....\frac{38.41}{39.40}\)
= \(\frac{2}{3}.\frac{2.3.4....38}{3.4.5....39}.\frac{5.6.7.....41}{4.5.6.....40}\)
= \(\frac{2}{3}.\frac{2}{39}.\frac{41}{4}\)
= \(\frac{41}{117}\)
a)\(\frac{-1}{3}< \frac{x}{24}< \frac{-1}{4}\)
=>\(\frac{-8}{24}< \frac{x}{24}< \frac{-6}{24}\)
=>x=-7
Vậy x=-7
b)Bn làm tương tự nha
Chúc bn học tốt
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\Rightarrow\frac{1}{2}+\frac{3}{10}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20}=\frac{4}{5}\)
Như vậy cũng hơi tắt. Nhưng mà **** cho tôi đi. Bai này có công thức đấy.
\(\frac{a}{b}
Câu hỏi của doraemon - Toán lớp 6 - Học toán với OnlineMath
\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{29}+\frac{1}{30}\)
\(A=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}\right)\)
\(A>\left(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)\)
\(A>10.\frac{1}{20}+10.\frac{1}{30}\)
\(A>\frac{1}{2}+\frac{1}{3}\)
\(A>\frac{5}{6}\)
Vậy \(A>\frac{5}{6}\)
Chúc bạn học tốt ~
\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{29}+\frac{1}{30}\)
\(A=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}\right)\)
\(A>\left(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)+\left(\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)\)
\(A>\frac{1}{20}\times10+\frac{1}{30}\times10\)
\(A>\frac{1}{2}+\frac{1}{3}\)
\(A>\frac{5}{6}\)
Vậy \(A>\frac{5}{6}\)
Ta có:
\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\)\(\frac{1}{19}\)
\(B=\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{15}\right)+\left(\frac{1}{16}+...+\frac{1}{19}\right)\)
\(\Rightarrow B>\left(\frac{1}{15}+\frac{1}{15}+\frac{1}{15}+...+\frac{1}{15}\right)+\left(\frac{1}{20}+...+\frac{1}{20}\right)\)
\(B>\frac{4}{5}+\frac{1}{5}\)
\(B>1\)\(\left(đpcm\right)\)
lấy 1 - 1/9900= 9899/9900 chi có thế thôi
9899/9900 thui