Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left|9+x\right|=2x\)
\(\Leftrightarrow\orbr{\begin{cases}9+x=2x\\9+x=-2x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}9=2x-x\\9=-2x-x\end{cases}\Leftrightarrow\orbr{\begin{cases}9=x\\9=-3x\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=9\\x=-3\end{cases}}\)
b, \(\left|5x\right|-3x=2\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3x=2\\5x-3x=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=2\\2x=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
a) Ta có: 3x = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)
7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)
Vậy ...
b) Tương tự câu trên
c) Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) => \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
=> \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=12\\\frac{y}{\frac{4}{3}}=12\\\frac{z}{\frac{5}{4}}=12\end{cases}}\) => \(\hept{\begin{cases}x=12\cdot\frac{3}{2}=18\\y=12\cdot\frac{4}{3}=16\\z=12\cdot\frac{5}{4}=15\end{cases}}\)
Vậy ....
d) HD : Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
(Sau đó áp dụng t/c của dãy tỉ số bằng nhau rồi làm tương tự như trên)
e) HD: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\) => x = 2k; y = 3k; z = 5k (*)
Thay x = 2k; y = 3k ; z = 5k vào xyz = 810 => tìm k => thay k ngược lại vào (*)
Nếu ko hiểu cứ hỏi t
b,Sửa đề : \(\frac{x}{3}=\frac{y}{4};\frac{y}{2}=\frac{z}{5}\)\(2x-3y+z=6\)
Ta có : \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{6}=\frac{y}{8}\)(*)
\(\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{8}=\frac{z}{20}\)(**)
Từ (*);(**) \(\Rightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{8}=\frac{z}{20}=\frac{2x-3y+z}{2.6-3.8+20}=\frac{49}{8}\)
\(x=36,75;y=49;z=122,5\)
`3xx(x-1/6)-2xx(x-1/3)=2/3`
`3x-1/2-2x+2/3=2/3`
`x=2/3-2/3+1/2`
`x=1/2`
`3x(x-1/6)-2x(x-1/3)=2/3`
`3x^2 - 1/2 x- 2x^2 + 2/3x = 2/3`
`x^2+1/6 x =2/3`
`x=(-1 \pm \sqrt97)/12`
\(a̸\)
\(\frac{3}{5}-\frac{1}{2}.x=\frac{1}{4}\)
\(\frac{1}{2}.x=\frac{3}{5}-\frac{1}{4}\)
\(\frac{1}{2}.x=\frac{7}{20}\)
\(\Rightarrow\frac{7}{10}\)
\(b̸\)
\(11,3+2\left[x-\frac{1}{3}\right]=\frac{25}{6}\)
\(2\left[x-\frac{1}{3}\right]=\frac{25}{6}-11,3\)
\(2\left[x-\frac{1}{3}\right]=\frac{-107}{15}\)
\(x-\frac{1}{3}=\frac{-107}{15}:2\)
\(x-\frac{1}{3}=\frac{-107}{30}\)
\(x=\frac{-107}{30}+\frac{1}{3}\)
\(x=\frac{-97}{30}\)
\(a)\frac{3}{5}-\frac{1}{2}x=\frac{1}{4}\)
\(\implies\frac{1}{2}x=\frac{3}{5}-\frac{1}{4}\)
\(\implies\frac{1}{2}x=\frac{7}{20}\)
\(\implies x=\frac{7}{20}:\frac{1}{2}\)
\(\implies x=\frac{7}{10}\)
Vậy...
\(b) 11,3+2(x-\frac{1}{3})=\frac{25}{6}\)
\(\implies \frac{113}{10}+2x-2.\frac{1}{3}=\frac{25}{6}\)
\(\implies \frac{113}{10}+2x-\frac{2}{3}=\frac{25}{6}\)
\(\implies \frac{113}{10}+2x=\frac{25}{6}+\frac{2}{3}\)
\(\implies \frac{113}{10}+2x=\frac{29}{6}\)
\(\implies 2x=\frac{29}{6}-\frac{113}{10}\)
\(\implies 2x=\frac{-97}{15}\)
\(\implies x=\frac{-97}{30}\)
Vậy..
\(c)5x-435+2x+140+3x=565\)
\(\implies (5x+2x+3x)+(-435+140)=565\)
\(\implies 10x+(-295)=565\)
\(\implies 10x=565-(-295)\)
\(\implies 10x=860\)
\(\implies x=86\)
Vậy...
~ hok tốt a~
a) \(\frac{x}{-5}>0\)
\(\Rightarrow-5x>0\)
\(\Rightarrow5x< 0\)
\(\Rightarrow x< 0\)
\(\Rightarrow x\in(-1,-2,-3,...)\)
b) \(\frac{2x}{5}=0\)
\(\Rightarrow2x=0\)
\(\Rightarrow x=0\)
c) \(0< \frac{x}{1}< 1\)
\(\Rightarrow0< x< 1\) mà x\(\in z\)
\(\Rightarrow x\in\varnothing\)
d) \(\frac{3x}{6}=1\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
e) \(2< \frac{x}{3}< 4\)
\(\Rightarrow\)\(6< x< 12\)
\(x\in(7,8,9,10,11,12)\)
a) 213 - 2 x X = 47
2 x X = 213 - 47
2 x X = 166
X = 166 : 2
X = 83
b) 3 x ( X + 1 ) - 300 = 906
3 x ( X + 1 ) = 906 + 300
3 x ( X + 1 ) = 1206
X + 1 = 1206 : 3
X + 1 = 402
X = 402 - 1
X = 401
c) \(\frac{7}{3}-\frac{2}{3}\times x=\frac{1}{4}\)
\(\frac{2}{3}\times x=\frac{7}{3}-\frac{1}{4}\)
\(\frac{2}{3}\times x=\frac{25}{12}\)
\(x=\frac{25}{12}:\frac{2}{3}\)
\(x=\frac{25}{8}\)
d) \(\frac{2}{5}\times x+\frac{7}{8}=2\)
\(\frac{2}{5}\times x=2-\frac{7}{8}\)
\(\frac{2}{5}\times x=\frac{9}{8}\)
\(x=\frac{9}{8}:\frac{2}{5}\)
\(x=\frac{45}{16}\)
Học tốt #
a) \(213-2\cdot x=47\)\(\Leftrightarrow2\cdot x=166\Leftrightarrow x=83\)
b)\(3x\left(x+1\right)-300=906\Leftrightarrow3x\left(x+1\right)=606\)
\(\Leftrightarrow x\left(x+1\right)=202\Leftrightarrow x^2+x-202=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2-202,25=0\)\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=\sqrt{202,25}\\x+\frac{1}{2}=-\sqrt{202,25}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{202,25}-0,5\\x=-\sqrt{202,25}-0,5\end{cases}}\)
a. \(\frac{-3}{2}-2x+\frac{3}{4}=-22\)2
=> \(-2x=-22+\frac{3}{2}-\frac{3}{4}\)
=> \(-2x=\frac{-85}{4}\)
=> \(x=\frac{-85}{4}:\left(-2\right)\)
=> \(x=\frac{85}{8}\)
b. \(\left(\frac{-2}{3}x-\frac{3}{5}\right).\left(\frac{3}{-2}-\frac{10}{3}\right)=\frac{2}{5}\)
=> \(\left(\frac{-2}{3}x-\frac{3}{5}\right).\frac{-29}{6}=\frac{2}{5}\)
=> \(\frac{-2}{3}x-\frac{3}{5}=\frac{2}{5}:\left(\frac{-29}{6}\right)\)
=> \(\frac{-2}{3}x-\frac{3}{5}=\frac{-12}{145}\)
=> \(\frac{-2}{3}x=\frac{-12}{145}+\frac{3}{5}\)
=> \(\frac{-2}{3}x=\frac{15}{29}\)
=> x = \(\frac{15}{29}:\frac{-2}{3}\)
=> x = \(\frac{-45}{58}\)
Ta có:
\(D=1.2+2.3+3.4+4.5+...+99.100\)
\(\Leftrightarrow3D=1.2.\left(3-0\right)+2.3+\left(4-1\right)+3.4+\left(5-2\right)+4.5.\left(6-3\right)+...+99.100.\left(101-98\right)\)
\(\Leftrightarrow3D=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100\)
\(\Leftrightarrow3D=99.100.101\Leftrightarrow D=\frac{99.100.101}{3}=333300\)
\(B=1.3+2.4+3.5+4.6+...+99.101\)
\(\Leftrightarrow B=\left(1.3+3.5+...+99.101\right)+\left(2.4+4.6+...+98.100\right)\)
\(\Leftrightarrow6B=\left(1.3.\left(5-\left(-1\right)\right)+3.5.\left(7-1\right)+...+99.101.\left(103-97\right)\right)+\left(2.4.\left(6-0\right)+4.6.\left(8-2\right)+...+98.100.\left(102-96\right)\right)\)
\(\Leftrightarrow B=\frac{99.101.103+3}{6}+\frac{98.100.102}{6}=338250\)
Vì các bước gần tương tự như bài a) nên mình bỏ bước.
\(C=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\)
\(\Leftrightarrow C=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)\)
\(\Leftrightarrow C=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)
\(\Leftrightarrow C=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{49.50}\right)=\frac{1}{2}.\frac{612}{1225}=\frac{306}{1225}\)
,\(2\times x+3\times x=12\)
\(x\times\left[2+3\right]=12\)
\(x\times5=12\)
\(x=12\div5\)
\(x=2,4\)
tu bai nay ma ban suy ra de lam cac cau a;b;c nha