Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(2x=z\Rightarrow\frac{x}{1}=\frac{z}{2}\)
\(\frac{x}{2}=\frac{y}{3};\frac{x}{1}=\frac{z}{2}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y +z}{2+3+4}=\frac{27}{9}=3\)
Vậy x = 3 x2 = 6
y = 3 x 3 = 9
z = 3 x 4 = 12
Ta có : z=2x
Thay vào ta có x+y+z=27
x+y+2x=27
3x+y=27 (1)
3x=2y => 3x-2y=0 (2)
giải pt (1) và (2) trên máy tính ta được: x=6 , y=9
\(\left(-1\right)^2\left(-2\right)-2\left(-2\right)^2\left(-1\right)=\left(-2\right)-\left(-8\right)=6\)
Ta có : \(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=x+y+z\) (1)
Áp dụng tính chất dãy tỉ số bằng nhau cho 3 đăng thức đầu tiên ta được :
\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+1+x+z+1+x+y-2}=\frac{x+y+z}{2.\left(x+y+x\right)}=\frac{1}{2}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{1}{2}=x+y+z\) và \(\left\{{}\begin{matrix}2x=y+z+1\\2y=z+x+1\\2z=x+y-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-1=\frac{1}{2}\\3y-1=\frac{1}{2}\\3z+2=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{matrix}\right.\)
Vậy : ....
Cộng theo từng vế các đẳng thức đã cho, ta được:
x.(x + y + z) + y(x + y + z) + z.(x+ y + z) = - 5 + 9 + 5
⇔ (x + y + z). (x + y + z ) = 9
Suy ra: (x + y + z)2 = 9 ⇒ x + y + z = ±3