K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2016

Có sai đề không?

27 tháng 10 2016

x/2=y/3

x/1=z/2

=>x/2=y/3=z/4=x+y+z=2+3+4=27/9=3

Vậy x=6

      y=9

      z=12

27 tháng 10 2016

Ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(2x=z\Rightarrow\frac{x}{1}=\frac{z}{2}\)

\(\frac{x}{2}=\frac{y}{3};\frac{x}{1}=\frac{z}{2}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y +z}{2+3+4}=\frac{27}{9}=3\)

Vậy x = 3 x2 = 6

       y = 3 x 3 = 9

      z = 3 x 4 = 12

Ta có :   z=2x

          Thay vào ta có x+y+z=27

                                 x+y+2x=27

                                 3x+y=27  (1)

                 3x=2y =>  3x-2y=0   (2)

giải pt (1) và (2) trên máy tính ta được: x=6 , y=9

20 tháng 12 2018

a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)

\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)\(x-y-z=-27\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)

Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)

          \(\frac{y}{14}=9\Rightarrow y=9.14=126\)

         \(\frac{z}{10}=9\Rightarrow z=9.10=90\)

Vậy:\(x=189;y=126\)\(z=90\)

20 tháng 12 2018

b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)\(x^2-2y^2+z^2=18\)

\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)\(x^2-2y^2+z^2=18\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)

\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)

\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)

Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)

10 tháng 7 2017

Sorry mình tìm ra cách giải rồi...

25 tháng 9 2017

\(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{x}{2}=\dfrac{z}{4}\end{matrix}\right.\Leftrightarrow\dfrac{x}{2}}=\dfrac{y}{3}=\dfrac{z}{4}\) Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x+y+z}{2+3+4}=\dfrac{27}{9}=3\) \(\Rightarrow X=2.3=6\) \(\Rightarrow Y=3.3=9\) \(\Rightarrow Z=4.3=12\)

26 tháng 11 2021

Answer:

1.

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

\(\Rightarrow2\frac{x}{30}=3\frac{y}{60}=\frac{z}{28}\)

Áp dụng tính chất của dãy tỷ số bằng nhau

\(2\frac{x}{30}+3\frac{y}{60}+\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=3\)

\(\Rightarrow2\frac{x}{30}=3\Rightarrow x=45\)

\(\Rightarrow3\frac{y}{60}=3\Rightarrow y=60\)

\(\Rightarrow\frac{z}{28}=3\Rightarrow z=84\)

2.

Ta đặt: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

\(\Rightarrow x=2k\)

\(\Rightarrow y=3k\)

\(\Rightarrow z=4k\)

\(\Rightarrow xyz=2k.3k.4k=24.k^3=648\)

\(\Rightarrow k^3=27\Rightarrow k=3\)

\(\Rightarrow\frac{x}{2}=3\Rightarrow x=6\)

\(\Rightarrow\frac{y}{3}=3\Rightarrow y=9\)

\(\Rightarrow\frac{z}{4}=3\Rightarrow z=12\)

3.

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(4x=2z\Rightarrow\frac{x}{2}=\frac{z}{4}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x+y+z=27\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=3\)

\(\Rightarrow\frac{x}{2}=3\Rightarrow x=6\)

\(\Rightarrow\frac{y}{3}=3\Rightarrow y=9\)

\(\Rightarrow\frac{z}{4}=3\Rightarrow z=12\)

27 tháng 9 2021

Các phần còn lại check lại đề bài.

b) Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\Rightarrow x=6\\\frac{y}{3}=3\Rightarrow y=9\\\frac{z}{4}=3\Rightarrow z=12\end{cases}}\)

d) Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+y+z+6}{3+4+5}=\frac{24}{12}=2\)

\(\Rightarrow\hept{\begin{cases}x+1=6\\y+2=8\\z+3=10\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=6\\z=7\end{cases}}\)