K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: 2/3x=3/4y

\(\Leftrightarrow12\cdot\dfrac{2}{3}x=12\cdot\dfrac{3}{4}y\)

=>8x=9y

=>x/9=y/8

=>x/135=y/120(1)

Ta có: 1/5y=3/7z

nên \(35\cdot\dfrac{1}{5}y=35\cdot\dfrac{3}{7}z\)

=>7y=15z

=>y/15=z/7

=>y/120=z/56(2)

Từ (1) và (2) suy ra x/135=y/120=z/56

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{135}=\dfrac{y}{120}=\dfrac{z}{56}=\dfrac{3x+4y-9z}{3\cdot135+4\cdot120-9\cdot56}=\dfrac{254}{381}=\dfrac{2}{3}\)

Do đó x=90 y=80; z=112/3

12 tháng 12 2021

7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36

Nên theo tính chất của dãy tỉ số bằng nhau ta có:

 \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6

 \(\Rightarrow\)x=6.5=30

     y=6.6=36

     z=6.7=42

vậy x=30,y=36,z=42

 

 

a: 2x-3y-4z=24

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)

=>x=-6/7; y=-36/7; z=-18/7

b: 6x=10y=15z

=>x/10=y/6=z/4=k

=>x=10k; y=6k; z=4k

x+y-z=90

=>10k+6k-4k=90

=>12k=90

=>k=7,5

=>x=75; y=45; z=30

d: x/4=y/3

=>x/20=y/15

y/5=z/3

=>y/15=z/9

=>x/20=y/15=z/9

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)

=>x=500; y=375; z=225

21 tháng 10 2021

Áp dụng t/c dtsbn:

\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{3x-3}{6}=\dfrac{4y+12}{16}=\dfrac{5z-25}{30}=\dfrac{-3x+3-4y-12+5z-25}{-6-16+30}=\dfrac{50+3-12-25}{8}=\dfrac{16}{8}=2\\ \Rightarrow\left\{{}\begin{matrix}x-1=4\\y+3=8\\z-5=12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5\\y=5\\z=17\end{matrix}\right.\)

20 tháng 2 2023

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x+4y+2z}{3\cdot3+4\cdot4+2\cdot5}=\dfrac{70}{35}=2\)

Do đó: x=6; y=8; z=10

14 tháng 1 2022

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\text{ và }3x+4y+2z=70\)

\(\text{Áp dụng tính chất dãy tỉ số bằng nhau:}\)

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x+4y+2z}{3.3+4.4+2.5}=\dfrac{70}{35}=2\)

\(\Rightarrow x=2.3=6\)

\(y=2.4=8\)

\(z=2.5=10\)

11 tháng 2 2022

b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)

Đặt \(x=15k;y=20k;z=24k\)

Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)