K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2015

x:y:z= 4:5:6

=>x/4=y/5=z/6

=>x2/16=2y2/50=z2/36

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

x2/16=2y2/50=z2/36=x^2-  2y^2+ z^2/16-50+36=18/2=9

suy ra x2/16=9 =>x2=144 =>x=12 hoặc x=-12

2y2/50=9 =>y2=225 => y=15 hoặc y=-15

z2/36=9 =>z2=324 =>z=18 hoặc z=-18

8 tháng 8 2017

\(x:y:z=4:5:6\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)và x2 - 2y2 + z2 = 18 

\(\Rightarrow\frac{x}{4}=\frac{x^2}{4^2}=\frac{x^2}{16}\)

\(\Rightarrow\frac{y}{5}=\frac{2y^2}{2.5^2}=\frac{2y^2}{50}\)

\(\Rightarrow\frac{z}{6}=\frac{z^2}{6^2}=\frac{z^2}{36}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có: 

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

\(\frac{x^2}{16}=9\Rightarrow x^2=9.16=x^2=144\Rightarrow x=12\)

\(\frac{2y^2}{50}=9\Rightarrow2y^2=9.50=2y^2=450=y^2=450:2=y^2=225\Rightarrow y=15\)

\(\frac{z^2}{36}=9\Rightarrow z^2=9.36=z^2=324\Rightarrow z=18\)

Vậy......

15 tháng 11 2015

bài 2 :

ta có x:y:z=3:5:(-2)

=>x/3=y/5=z/-2

=>5x/15=y/5=3z/-6

áp dụng tc dãy ... ta có :

5x/15=y/5=3z/-6=5x-y+3z/15-5+(-6)=-16/4=-4

=>x/3=-=>x=-12

=>y/5=-4=>y=-20

=>z/-2=-4=>z=8

Đặt x/4=y/5=z/6=k

=>x=4k; y=5k; z=6k

\(x^2-2y^2+z^2=18\)

\(\Leftrightarrow16k^2-50k^2+36k^2=18\)

\(\Leftrightarrow2k^2=18\)

=>k2=9

Trường hợp 1: k=3

=>x=12; y=15; z=18

Trường hợp 2: k=-3

=>x=-12; y=-15; z=-18

10 tháng 1 2018

\(x:y:z=4:5:6\\ \Leftrightarrow\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{z}{6}=k\\ \Rightarrow\left\{{}\begin{matrix}x=4k\\y=5k\\z=6k\end{matrix}\right.\\ x^2-2y^2+z^2=18\\ \Leftrightarrow\left(4k\right)^2-2\left(5k\right)^2+\left(6k\right)^2=18\\ \Leftrightarrow16k^2-50k^2+36k^2=18\\ \Leftrightarrow2k^2=18\\ \Leftrightarrow k^2=9\\ \Leftrightarrow\left[{}\begin{matrix}k=3\\k=-3\end{matrix}\right.\\ k=3\Rightarrow\left\{{}\begin{matrix}x=4k=4\cdot3=12\\y=5k=5\cdot3=15\\z=6k=6\cdot3=18\end{matrix}\right.\\ k=-3\Rightarrow\left\{{}\begin{matrix}x=4k=4\cdot\left(-3\right)=-12\\y=5k=5\cdot\left(-3\right)=-15\\z=6k=6\cdot\left(-3\right)=-18\end{matrix}\right.\)

Vậy ...

6 tháng 3 2020

cảm ơn cậu đã giúp chúng tớ làm bài này

 

18 tháng 10 2022

b: 4x=7y nên x/7=y/4

Đặt x/7=y/4=k

=>x=7k; y=4k

Ta có: x^2+y^2=260

=>49k^2+16k^2=260

=>65k^2=260

=>k^2=4

TH1: k=2

=>x=14; y=8

TH2: k=-2

=>x=-14; y=-8

c: Đặt x/4=y/5=z/6=k

=>x=4k; y=5k; z=6k

Ta có: x^2-2y^2+z^2=18

\(\Leftrightarrow16k^2-50k^2+36k^2=18\)

=>k^2=9

TH1: k=3

=>x=12; y=15; z=18

TH2: k=-3

=>x=-12; y=-15; z=-18

7 tháng 12 2016

a) Theo đề bài, ta có: 

\(x:y:z=2:4:6\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)và \(3x-y+z=24\)

Theo tính chất của dãy tỉ số bằng nhau, ta có:

   \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{3x-y+z}{2.3-4+6}=\frac{24}{8}=3\)

\(.\frac{x}{2}=3\Rightarrow x=3.2=6\)

\(.\frac{y}{4}=3\Rightarrow y=3.4=12\)

\(.\frac{z}{6}=3\Rightarrow z=3.6=18\)

Vậy\(x,y,z\) lần lượt là: \(6,12,18\)

b) Vì x, y, z tỉ lệ nghịch với 6, 10, 4 nên ta có:

       \(6x=10y=4z\Rightarrow\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{10}}=\frac{z}{\frac{1}{4}}\)

Theo tính chất của dãy tỉ số bằng nhua, ta có: 

       \(\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{10}}=\frac{z}{\frac{1}{4}}=\frac{x+2y-3z}{\frac{1}{6}+2.\frac{1}{10}-3.\frac{1}{4}}=\frac{115}{\frac{-23}{60}}=-300\)

\(.\frac{x}{\frac{1}{6}}=-300\Rightarrow x=-300.\frac{1}{6}=-50\)

\(.\frac{y}{\frac{1}{10}}=-300\Rightarrow y=-300.\frac{1}{10}=-30\)

\(.\frac{z}{\frac{1}{4}}=-300\Rightarrow z=-300.\frac{1}{4}=-75\)

Vậy x, y, z lần lượt là: -50; -30; -75

30 tháng 12 2016

Minh cảm ơn nha!

12 tháng 12 2020

Bài làm

Nếu mà là -100 thì sẽ tròn là số 2 thay vì là 2√10

Ta có: \(x:y:z=3:4:5=\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

=> x = 3k

     y = 4k

     z = 5k

Lại có: 2x2 + 2y2 - 3z2 = -1000

=> 2(3k)2 + 2(4k)2 - 3(5k)2 = -1000

=> 2 . 9k2 + 2 . 16k2 - 3 . 25k2 = -1000

=> 18k2 + 32k2 - 75k2 = -1000

=> -25k2 = -1000

=> k2 = 40

=> k = \(\pm\sqrt{40}=\pm2\sqrt{10}\)

Thay \(k=2\sqrt{10}\) vào x = 3k, y = 4k và z = 5k 

Ta được: x = 3 . \(2\sqrt{10}\)\(6\sqrt{10}\)

               y = 4 . \(2\sqrt{10}\) = \(8\sqrt{10}\)

               z = 5 . \(2\sqrt{10}\) = \(10\sqrt{10}\)

Vậy x = \(6\sqrt{10}\)

y = \(8\sqrt{10}\)

z = \(10\sqrt{10}\)

20 tháng 11 2021

Với các bài khá nâng cao như vậy bạn đăng tách ra nhé!

Answer:

a) Ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Ta đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)

Ta có: \(5z^2-3x^2-2y^2=594\)

\(\Rightarrow5.\left(5k\right)^2-3.\left(3k\right)^2-2.\left(4k\right)^2=594\)

\(\Rightarrow5.5^2k^2-3.3^2k^2-2.4^2k^2=594\)

\(\Rightarrow5.25k^2-3.9k^2-2.16.k^2=594\)

\(\Rightarrow125k^2-27k^2-32k^2=594\)

\(\Rightarrow k^2.\left(125-27-32\right)=594\)

\(\Rightarrow k^2.66=594\)

\(\Rightarrow k^2=9\)

\(\Rightarrow k=\pm3\)

Với \(k=3\Rightarrow\hept{\begin{cases}x=3.3=9\\y=3.4=12\\z=3.5=15\end{cases}}\)

Với \(k=-3\Rightarrow\hept{\begin{cases}x=\left(-3\right).3=-9\\y=\left(-4\right).3=-12\\z=\left(-5\right).3=-15\end{cases}}\)

20 tháng 11 2021

Answer:

b) \(3.\left(x-1\right)=2.\left(y-2\right)\Rightarrow6.\left(x-1\right)=4.\left(y-2\right)\)

Mà: \(4.\left(y-2\right)=3.\left(z-3\right)\)

\(\Rightarrow6.\left(x-1\right)=4.\left(y-2\right)=3.\left(z-3\right)\)

\(\Rightarrow\frac{6.\left(x-1\right)}{12}=\frac{4.\left(y-2\right)}{12}=\frac{3.\left(z-3\right)}{12}\Rightarrow\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}==\frac{\left(2x-2\right)+\left(3y-6\right)-z}{4+9-4}=\frac{2x-2+3y-6-z}{9}=\frac{\left(2x+3y-z\right)-\left(2+6\right)}{9}=\frac{50-8}{9}=\frac{14}{3}\)

\(\Rightarrow\hept{\begin{cases}x-1=2.\frac{14}{3}=\frac{28}{3}\\y-2=3.\frac{14}{3}=14\\z-3=4.\frac{14}{3}=\frac{56}{3}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{31}{3}\\y=16\\z=\frac{68}{3}\end{cases}}\)

c) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y-z}{18+16-15}=\frac{38}{19}=2\)

\(\Rightarrow\frac{x}{18}=2\Rightarrow x=18.2=36\)

\(\Rightarrow\frac{y}{16}=2\Rightarrow y=16.2=32\)

\(\Rightarrow\frac{z}{15}=2\Rightarrow z=15.2=30\)