Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4)
a)Vì I2x+3I\(\ge\)0
=>-I2x+3I\(\le\)0
=>8-I2x+3I\(\le\)8
Dấu = xảy ra khi : 2x+3=0
2x=-3
x=-3/2
Vậy GTLN của A là 8 tại x=-3/2
b)Vì (2x-1)2\(\ge\)0;Iy+3I\(\ge\)0
=>-(2x-1)2\(\le\)0;-Iy+3I\(\le\)0
=>11-(2x-1)2-Iy+3I\(\le\)11
Dấu = xảy ra khi: 2x-1=0 và y+3=0
x=1/2 và y=-3
Vậy GTNN của B=11 tại x=1/2 và y=-3
a, (x-3)(x-7)<0
=> +, x-3>0=>x>3=> x=4,5,6
x-7<0 x<7
+, x-3<0=>x<3=> x ko có g trị
x-7>0 x>7
Câu 6:
2009-|x-2009|=x
Suy ra { viết dấu suy ra nha } 2009-x=|x-2009|
viết tiếp suy ra như trên |x-2009|=-(x-2009)
viết tiếp suy ra như trên x \(\le\) 2009
Vậy x\(\le\) 2009
1)(x-3)(y+2)=-6
Ta xét bảng sau:
x-3 | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
x | 4 | 5 | 6 | 9 | 2 | 1 | 0 | -3 |
y+2 | -6 | -3 | -2 | -1 | 6 | 3 | 2 | 1 |
y | -8 | -5 | -4 | -3 | 4 | 1 | 0 | -1 |
2)(5-x)(4-y)=-5
Ta xét bảng sau:
5-x | 1 | 5 | -1 | -5 |
x | 4 | 0 | 6 | 10 |
4-y | -5 | -1 | 5 | 1 |
y | 9 | 5 | -1 | 3 |
3)4) tương tự
a) x/2 = y/3 = z/4 va x + y + z =18.
Áp dụng tính chất của dãy tỉ số bằng nhau:
x/2 = y/3 = z/4 = x+y+z/2+3+4 = 18 /9 =2
=> x= 2*2 =4
y= 2* 3=6
z=2*4= 8
Vậy x=4; y=6; z=8.
b) x/5 = y/-6 = z/7 va x + y - z =32.
Áp dụng tính chất của dãy tỉ số bằng nhau:
x/5 = y/-6 =z/7 =x+y-z/ 5+(-6) -7 = 32/-8 =-4
=> x= -4 *5 = -20
y= -4* (-6)= 24
z= -4 * 7 = -28
Vậy x=-20 ; y= 24; x= -28.
c) x/5 = y/3 = z/2 va 2x + 3y + 4z =54.
x/5 = 2x/10
y/3 = 3y/9
z/2 = 4z/8
Áp dụng tính chất của dãy tỉ số bằng nhau:
2x/10 = 3y/9 = 4x/8 = 2x+3y+4z/10+9+8 = 54/27= 2
=> x= 2*5 = 10
y= 2*3 =6
x= 2*2 =4
Vậy x= 10; y=6; z=4
d) x/2 = y/3 = z/6 va 3x - 2y + 2z = 24.
x/2 =3x/6
y/3 = 2y/6
z/6 = 2z/12
Áp dụng tính chất của dãy tỉ số bằng nhau:
3x/6 = 2y/6 = 2z/12 = 3x- 2y +2z/6-6+12 = 24/12 =2
=> x= 2*2 =4
y= 2*3 =6
z= 2* 6 =12
Vậy x=4; y=6; z=12
\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(3x-5\right)^{2006}=0\\\left(y^2-1\right)^{2008}=0\\\left(x-z\right)^{2100}=0\end{matrix}\right.\Leftrightarrow x=z=\dfrac{5}{3}\)
\(\Rightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)
Từ đề suy ra :
\(\left\{{}\begin{matrix}\left(3x-5\right)^{2006}=0\\\left(y^2-1\right)^{2008}=0\\\left(x-z\right)^{2100}=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3x-5=0\\y^2-1=0\\x-z=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=z=\dfrac{5}{3}\\y=\pm1\end{matrix}\right.\)