K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2017

\(M=\frac{z^5.\left(x+y^2\right).\left(x^2-y^3\right).\left(x^2-y\right)}{x^2+y^2+z^2+1}=\frac{\left(-5\right)^5.\left(-4+16^2\right).\left[\left(-4\right)^2-16^3\right].\left[\left(-4\right)^2-16\right]}{\left(-4\right)^2+16^2+\left(-5\right)^2+1}\)

\(=\frac{\left(-5\right)^5.\left(-4+16^2\right).\left[\left(-4\right)^2-16^3\right].0}{\left(-4\right)^2+16^2+\left(-5\right)^2+1}=0\)

21 tháng 7 2018

A= -x2 -8x+5

A= -(x2 + 8x -5)

A= -(x2+2x4+42-42-5)

A= -(x+4)2+21.Vì -(x+4)2\(\le\)0 =>A\(\le\)21

GTLN A=21 <=>x+4=0 =>x= -4

8 tháng 8 2018

6.x2-x.y+7.y2

=

11 tháng 7 2016

Ta có : \(\left(x-3\right)^2+x^4=-y^2+6y-4\Leftrightarrow\left(x-3\right)^2+x^4=-\left(y^2-6y+9\right)+5\)

\(\Leftrightarrow\left(x-3\right)^2+x^4+\left(y-3\right)^2=5\)(1)

Từ (1) ta suy ra được : \(x^4\le5\Rightarrow-1\le x\le1\)( Vì \(x\in Z\))

Nhận xét , nếu \(x\le0\Rightarrow\left(y-3\right)^2=5-\left[\left(x-3\right)^2+x^4\right]< 0\) (vô lí)

Vậy x = 1.  Suy ra \(\left(y-3\right)^2=0\Leftrightarrow y=3\)

Kết luận : Tập nghiệm của phương trình : (x;y) = (1;3)

12 tháng 7 2016

Ta chia thành 2 trường hợp : 
a)y^2+y=x^4+x^3+x^2+x=0 (1) 
...(1)<=>y(y+1)=x(x^3+x^2+x+1)=0 
...Pt này có 4 nghiệm sau 
...x1=0; y1=0 
...x2=0; y2= -1 
...x3= -1; y3=0 
...x4= -1; y4= -1 
b)y^2+y=x^4+x^3+x^2+x (# 0) (2) 
...ĐK để 2 vế khác 0 là x và y đều phải khác 0 và -1.Với ĐK đó thì 
...(2)<=>y(y+1)=(x^2)(x^2+x+1+1/x) 
...Đến đây lại chia 2 th : 
...+{y=x^2 
.....{x+1+1/x=1 (3) 
.....(3) vô nghiệm =>th này vô nghiệm 
...+{y+1=x^2 
.....{x+1+1/x= -1 
....=>x= -1; y=0 (theo ĐK ở trên nghiệm này phải loại) 
...Vậy khi y^2+y=x^4+x^3+x^2+x # 0 thì pt vô nghiệm 
Tóm lại pt đã cho có 4 nghiệm 
x1=0; y1=0 
x2=0; y2= -1 
x3= -1; y3=0 
x4= -1; y4= -1

8 tháng 11 2015

a. Ta có:

\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)=a^2\left(b-c\right)-b^2\left(b-c+a-b\right)+c^2\left(a-b\right)=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(c-a\right)\left(c-b\right)\)

và \(ab^2-ac^2-b^3+bc^2=a\left(b^2-c^2\right)-b\left(b^2-c^2\right)=\left(a-b\right)\left(b-c\right)\left(b+c\right)\)

Vậy, \(A=\frac{\left(a-b\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)\left(b-c\right)\left(b+c\right)}=\frac{c-a}{-c-b}=\frac{a-c}{c+b}\)

5 tháng 1 2018

Sửa lại đề nha: x+y+z=0

a)

Xét x+y+z=0

(x+y+z)2=02

x2+y2+z2+2xy+2yz+2zx=0

=> x2+y2+z2=-2xy-2yz-2zx

Xét \(\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

= \(\dfrac{x^2+y^2+z^2}{\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)}\)

=\(\dfrac{x^2+y^2+z^2}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2}\)

=\(\dfrac{x^2+y^2+z^2}{2x^2+2y^2+2z^2-2xy-2yz-2zx}\)(1)

Thay x2+y2+z2=-2xy-2yz-2zx vào (1)

=>\(\dfrac{x^2+y^2+z^2}{2x^2+2y^2+2z^2+x^2+y^2+z^2}\\=\dfrac{x^2+y^2+z^2}{3x^2+3y^2+3z^2}\\ =\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}\\ =\dfrac{1}{3}\)

5 tháng 1 2018

b)

Xét x+y+z=0 ba lần:

- Lần 1:x+y+z=0

<=> x+y=0-z

<=>(x+y)2=(0-z)2

<=>x2+2xy+y2=z2

<=>x2+y2-z2=-2xy(1)

-Lần 2: x+y+z=0

<=> y+z=0-x

<=>(y+z)2=(0-x)2

<=>y2+2yz+z2=x2

<=>y2+z2-x2=-2yz(2)

-Lần 3: x+y+z=0

<=>z+x=0-y

<=>(z+x)2=(0-y)2

<=>z2+2zx+x2=y2

<=> z2+x2-y2=-2zx(3)

Thay (1),(2),(3) vào Q, ta có:

=>\(\dfrac{\left(x^2+y^2-z^2\right)\left(y^2+z^2-x^2\right)\left(z^2+x^2-y^2\right)}{16xyz}=\dfrac{\left(-2xy\right)\left(-2yz\right)\left(-2zx\right)}{16xyz}\\=\dfrac{\left(-2yz\right)\left(-2zx\right)}{-8z}\\ =\dfrac{y\left(-2zx\right)}{4}\\ =\dfrac{-2xyz}{4}\\ =-\dfrac{xyz}{2}\)