Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có:
\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)=a^2\left(b-c\right)-b^2\left(b-c+a-b\right)+c^2\left(a-b\right)=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)
\(=\left(a-b\right)\left(c-a\right)\left(c-b\right)\)
và \(ab^2-ac^2-b^3+bc^2=a\left(b^2-c^2\right)-b\left(b^2-c^2\right)=\left(a-b\right)\left(b-c\right)\left(b+c\right)\)
Vậy, \(A=\frac{\left(a-b\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)\left(b-c\right)\left(b+c\right)}=\frac{c-a}{-c-b}=\frac{a-c}{c+b}\)
b) \(\dfrac{x^2+2\cdot x+2}{x+1}>\dfrac{x^2+4\cdot x+5}{x+2}-1\)
\(\Leftrightarrow\dfrac{x^2+2\cdot x+2}{x+1}-\dfrac{x^2+4\cdot x+5}{x+2}+1>0\)
\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x^2+2x+2\right)-\left(x+1\right)\left(x^2+4x+5\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}>0\)
\(\Leftrightarrow\dfrac{x^3+2x^2+2x+2x^2+4x+4-\left(x^3+4x^2+5x+x^2+4x+5\right)+x^2+2x+x+2}{\left(x+1\right)\left(x+2\right)}>0\)
\(\Leftrightarrow\dfrac{x^3+2x^2+2x+2x^2+4x+4-\left(x^3+5x^2+9x+5\right)+x^2+2x+x+2}{\left(x+1\right)\left(x+2\right)}>0\)
\(\Leftrightarrow\dfrac{x^3+2x^2+2x+2x^2+4x+4-x^3-5x^2-9x-5+x^2+2x+x+2}{\left(x+1\right)\left(x+2\right)}>0\)
\(\Leftrightarrow\dfrac{0+0+1}{\left(x+1\right)\left(x+2\right)}>0\)
\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}>0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)>0\)
\(\left\{{}\begin{matrix}x+1>0\\x+2>0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+1< 0\\x+2< 0\end{matrix}\right.\)
↓
\(\left\{{}\begin{matrix}x>-1\\x>-2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x< -1\\x< -2\end{matrix}\right.\)
a. \(A=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
Đặt \(t=x^2+5xy+5y^2\left(t\inℤ\right)\)
\(\Rightarrow A=\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2=\left(x^2+5xy+5y^2\right)^2\)
Vậy giá trị của A là một số chính phương
a)\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
Đặt \(t=x^2+3x\) thì biểu thức có dạng \(t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(x^2+3x+1\right)^2\)
b)\(\left(x^2-x+2\right)^2+4x^2-4x-4=\left(x^2-x+2\right)^2+4\left(x^2-x-1\right)\)
Đặt \(k=x^2-x+2\) thì biểu thức có dạng
k2+4(k-3)=k2+4k-12=k2-2k+6k-12=k(k-2)+6(k-2)=(k-2)(k+6)=(x2-x)(x2-x+8)=(x-1)x(x2-x+8)
c)làm tương tự câu a
a, \(\left(x^2+\dfrac{2}{5}y\right)\left(x^2-\dfrac{2}{5}y\right)=x^4-\dfrac{4}{25}y^2\)
b, \(\left(3x-2y\right)\left(3x+2y\right)\left(9x^2+4y^2\right)\)
\(=\left(9x^2-4y^2\right)\left(9x^2+4y^2\right)\)
\(=81x^4-16y^4\)
\(M=\frac{z^5.\left(x+y^2\right).\left(x^2-y^3\right).\left(x^2-y\right)}{x^2+y^2+z^2+1}=\frac{\left(-5\right)^5.\left(-4+16^2\right).\left[\left(-4\right)^2-16^3\right].\left[\left(-4\right)^2-16\right]}{\left(-4\right)^2+16^2+\left(-5\right)^2+1}\)
\(=\frac{\left(-5\right)^5.\left(-4+16^2\right).\left[\left(-4\right)^2-16^3\right].0}{\left(-4\right)^2+16^2+\left(-5\right)^2+1}=0\)
A= -x2 -8x+5
A= -(x2 + 8x -5)
A= -(x2+2x4+42-42-5)
A= -(x+4)2+21.Vì -(x+4)2\(\le\)0 =>A\(\le\)21
GTLN A=21 <=>x+4=0 =>x= -4