Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(xy=x+y\Rightarrow xy-x-y=0\)
\(\Rightarrow xy-x-y+1=0+1=1\)
\(\Rightarrow x\left(y-1\right)-\left(y-1\right)=1\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=1\)
\(\Rightarrow x-1;y-1\inƯ\left(1\right)=\left\{-1;1\right\}\)
x-1 | -1 | 1 |
x | 0 | 2 |
y-1 | -1 | 1 |
y | 0 | 2 |
Vậy (x;y)={(0;0);(2;2)}
Bài 1:
Để E nguyên thì \(x+5⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{3;1;9;-5\right\}\)
Có: x+y=xy <=> x+y-xy=0 <=> x(1-y) -1+y +1=0 <=> (x-1)(1-y)= -1
Nếu x,y không nguyên thì có vô số nghiệm cứ mỗi x thay vào sẽ có 1 y
Nếu x,y nguyên thì giải như sau
Từ (x-1)(1-y)= -1
Suy ra x-1, 1-y là các ước nguyên của -1
Suy ra có các trường hợp sau
x-1=1 <=> x=2
1-y=-1<=> y=2
và
x-1= -1 <=> x=0
1-y=1 <=> y=0
Vậy có 2 nghiệm là (x,y) = (2,2) và (0,0)
a, Câu a rùi nhá.
b, <=> \(4x+4y-xy=0\)
<=> \(x\left(4-y\right)=-4y\)
<=> \(x=\frac{4y}{y-4}\) Vì x nguyên nên : \(y-4\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
=> \(y=\left\{5;3;6;2;8;0\right\}\)
=> \(x=\left\{20;-12;12;-4;8;0\right\}\)
Xét đk ta được cặp số : \(\left(x;y\right)=\left\{\left(20;5\right);\left(12;6\right);\left(8;8\right);\left(0;0\right)\right\}\)
c, \(6x+6y+1-xy=0\)
<=> \(x\left(6-y\right)+\left(6y+1\right)=0\)
<=> \(x=\frac{6y+1}{y-6}=\frac{6\left(y-6\right)+37}{y-6}=6+\frac{37}{y-6}\)
Vì x nguyên nên : \(\frac{37}{y-6}\in Z\) <=> \(y-6\inƯ\left(37\right)=\left\{1;-1;37;-37\right\}\)
=> \(y=\left\{7;5;43;-31\right\}\) => \(x=\left\{37;-37;1;-1\right\}\)
Kết hợp với đk ta được cặp số : \(\left(x;y\right)=\left\{\left(37;7\right);\left(-1;-31\right)\right\}\)
1/ Ta có \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
=> \(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}}\)
=> \(\orbr{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\)
Vậy \(\orbr{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\)thì \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
2 \(xy=\frac{x}{y}\Rightarrow y=\frac{x}{xy}=\frac{1}{y}\Rightarrow y^2=1\Rightarrow y=+-1\)
nếu \(y=1\Rightarrow x+y=xy=x+1=x\Rightarrow x-x=-1\Rightarrow0=-1\)vô lí (loại)
\(\Rightarrow y=-1\Rightarrow x+y=xy=x-1=-x\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)(thỏa mãn)
vậy \(x=\frac{1}{2};y=-1\)