K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2018

a, Câu a rùi nhá. 

b, <=> \(4x+4y-xy=0\)

<=> \(x\left(4-y\right)=-4y\)

<=> \(x=\frac{4y}{y-4}\) Vì x nguyên nên : \(y-4\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

=> \(y=\left\{5;3;6;2;8;0\right\}\)

=> \(x=\left\{20;-12;12;-4;8;0\right\}\)

Xét đk ta được cặp số : \(\left(x;y\right)=\left\{\left(20;5\right);\left(12;6\right);\left(8;8\right);\left(0;0\right)\right\}\)

17 tháng 3 2018

c, \(6x+6y+1-xy=0\)

<=> \(x\left(6-y\right)+\left(6y+1\right)=0\)

<=> \(x=\frac{6y+1}{y-6}=\frac{6\left(y-6\right)+37}{y-6}=6+\frac{37}{y-6}\)

Vì x nguyên nên : \(\frac{37}{y-6}\in Z\) <=> \(y-6\inƯ\left(37\right)=\left\{1;-1;37;-37\right\}\)

=> \(y=\left\{7;5;43;-31\right\}\) => \(x=\left\{37;-37;1;-1\right\}\)

Kết hợp với đk ta được cặp số : \(\left(x;y\right)=\left\{\left(37;7\right);\left(-1;-31\right)\right\}\)

15 tháng 7 2016

\(xy+x-y=4\)

\(x\left(y+1\right)-\left(y+1\right)=4-1\)

\(\left(x-1\right)\left(y+1\right)=3\)

\(\Rightarrow x-1;y+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Ta có bảng :

x-1-3 -1 1  3  
x  -2024
y+1-1-331
y-2-420
15 tháng 7 2016

cảm ơn bạn

12 tháng 4 2016

Câu 1: xy + x - y = 4

<=> (xy + x) - (y+ 1) = 3

<=> x(y+1) - (y + 1) = 3

<=> (y + 1) (x - 1) = 3

Theo bài ra cần tìm các số nguyên dương x, y => Xét các trường hợp y + 1 nguyên dương và x -1 nguyên dương.

Mà 3 = 1 x 3 => Chỉ có thể xảy ra các trường hợp sau:

* TH1: y + 1 = 1; x - 1 = 3 => y = 0; x = 4 (loại vì y = 0)

* TH2: y + 1 = 3; x -1 = 1 => y = 2; x = 2 (t/m)

Vậy x = y = 2.

Câu 2:

Ta có:

 (a - b)/x = (b-c)/y = (c-a)/z =(a-b + b -c + c - a) (x + y + z) = 0

Vì x; y; z nguyên dương => a-b =0; b - c = 0; c- a =0 => a = b = c

5 tháng 3 2018

 \(\frac{a-b}{x}=\frac{b-c}{y}=\frac{c-a}{z}\)

9 tháng 10 2018

Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1). 
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

9 tháng 10 2018

 Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

23 tháng 10 2016

a)    x=4

b)     chịu 

hehe k nha

3 tháng 5 2017
a,x=1 b,x=3,y=9
29 tháng 5 2017

TH1: \(x\le1\)

pt <=> 1-x+3-x=4 <=> 4-2x=4 <=> 2x=0 <=> x=0 (tmđk)

TH2: \(1< x\le3\)

pt <=> x-1+3-x=4 <=> 2=4 vô lý!

TH3: x > 3

pt <=> x-1+x-3=4 <=> 2x-4=4 <=> 2x=8 <=> x=4 (đpcm)

Vậy x=0 và x=4

26 tháng 8 2015

a Ta có

xy -x-y=-1

=> x(y-1)-(y-1)=0

=> (y-1)(x-1)=0

=> + y-1 =0 và x-1 thỏa mãn với mọi số nguyên

   + x-1=0 và y-1 thỏa mãn với mọi số nguyên 

 

 

26 tháng 8 2015

nhưng tớ muốn làm hết luôn cơ !