K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2019

Bài 1 : Sửa đề :

Tìm x,y,z 

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z(1)\)

Ta có : \(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z(1)\)

Áp dụng tính chất bằng nhau của tỉ lệ thức ta được :

\(\frac{x+y+z}{2\left[x+y+z\right]}=x+y+z(2)\)

Nếu x + y + z = 0 thì từ 1 suy ra : x = 0 , y = 0 , z = 0

Nếu x + y + z \(\ne\)0 thì từ 2 suy ra \(\frac{1}{2}=x+y+z\), khi đó 1 trở thành :

\(\frac{x}{\frac{1}{2}-x+1}=\frac{y}{\frac{1}{2}-y+1}=\frac{z}{\frac{1}{2}-z-2}=\frac{1}{2}\)

Do đó : \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-\frac{3}{2}-z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)

Vậy có hai đáp số : \(\left[0,0,0\right]\)và \(\left[\frac{1}{2};\frac{1}{2};-\frac{1}{2}\right]\)

Bài 2 : Từ \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)

=> \(\frac{1+4y}{24}=\frac{1+2y+1+6y}{18+6x}\)

=> \(\frac{1+4y}{24}=\frac{2+8y}{2\left[9+3x\right]}\)

=> 9 + 3x = 24 => 3x = 15 => x = 5,y tự tìm

Tìm nốt bài cuối nhé 

15 tháng 2 2017

1) a. Ta có:\(\frac{x+4}{2008}+\frac{x+3}{2009}=\frac{x+2}{2010}+\frac{x+1}{2011}\)

\(\Rightarrow\frac{x+4}{2008}+1+\frac{x+3}{2009}+1=\frac{x+2}{2010}+1+\frac{x+1}{2011}+1\)

\(\Rightarrow\frac{x+4+2008}{2008}+\frac{x+3+2009}{2009}=\frac{x+2+2010}{2010}+\frac{x+1+2011}{2011}\)

\(\Rightarrow\frac{x+2012}{2008}+\frac{x+2012}{2009}=\frac{x+2012}{2010}+\frac{x+2012}{2011}\)

\(\Rightarrow\left(x+2012\right)\left(\frac{1}{2008}+\frac{1}{2009}\right)=\left(x+2012\right)\left(\frac{1}{2010}+\frac{1}{2011}\right)\)

\(\Rightarrow\left(x+2012\right)\left(\frac{1}{2008}+\frac{1}{2009}\right)-\left(x+2012\right)\left(\frac{1}{2010}+\frac{1}{2011}\right)=0\)

\(\Rightarrow\left(x+2012\right)\left(\frac{1}{2008}+\frac{1}{2009}-\frac{1}{2010}-\frac{1}{2011}\right)=0\)

\(\Rightarrow x+2012=0\)

\(\Rightarrow x=-2012\)

Bài 2:

a.Ta có: \(\frac{x+2y}{18}=\frac{1+4y}{24}\)

\(\Rightarrow24x+48y=18+72y\)

\(\Rightarrow24x+48y-72y=18\)

\(\Rightarrow24x-24y=18\)

\(\Rightarrow24\left(x-y\right)=18\)

\(\Rightarrow x-y=\frac{3}{4}\)

\(\Rightarrow y=x-\frac{3}{4}\)

thay \(y=x-\frac{3}{4}\)vào \(\frac{1+4y}{24}=\frac{1+x+6y}{6x}\)ta được \(\frac{1+4\times\left(x-\frac{3}{4}\right)}{24}=\frac{1+x+6\times\left(x-\frac{3}{4}\right)}{6x}\)

giải ra ta được x=7

\(\Rightarrow y=7-\frac{3}{4}=\frac{25}{4}\)

b. Đẻ A mang giá trị nuyên

\(\Leftrightarrow9+3n⋮n-4\)

\(\Leftrightarrow3n-12+21⋮n-4\)

\(\Leftrightarrow3\left(n-4\right)+21⋮n-4\)

\(\Leftrightarrow21⋮n-4\)

\(\Leftrightarrow n-4\inƯ_{\left(21\right)}=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)

Ta có bảng sau:


n-4 1 -1 3 -3 7 -7 21

-21

n 5 4 7 1 11 -3 25 -17

Vậy \(n\in\left\{5;4;7;1;11;-3;25;-17\right\}\)thì A là số nguyên.

Thay n vào A và tính giá trị

12 tháng 10 2019

Bài 1:

\(A=\frac{a+b}{b+c}.\)

Ta có:

\(\frac{b}{a}=2\Rightarrow\frac{b}{2}=\frac{a}{1}\) (1)

\(\frac{c}{b}=3\Rightarrow\frac{c}{3}=\frac{b}{1}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{b}{2}=\frac{c}{6}.\)

\(\Rightarrow\frac{a}{1}=\frac{b}{2}=\frac{c}{6}=\frac{a+b}{3}=\frac{b+c}{8}.\)

\(\Rightarrow A=\frac{a+b}{b+c}=\frac{3}{8}\)

Vậy \(A=\frac{a+b}{b+c}=\frac{3}{8}.\)

Bài 2:

a) \(\frac{72-x}{7}=\frac{x-40}{9}\)

\(\Rightarrow\left(72-x\right).9=\left(x-40\right).7\)

\(\Rightarrow648-9x=7x-280\)

\(\Rightarrow648+280=7x+9x\)

\(\Rightarrow928=16x\)

\(\Rightarrow x=928:16\)

\(\Rightarrow x=58\)

Vậy \(x=58.\)

b) \(\frac{x+4}{20}=\frac{5}{x+4}\)

\(\Rightarrow\left(x+4\right).\left(x+4\right)=5.20\)

\(\Rightarrow\left(x+4\right).\left(x+4\right)=100\)

\(\Rightarrow\left(x+4\right)^2=100\)

\(\Rightarrow x+4=\pm10.\)

\(\Rightarrow\left[{}\begin{matrix}x+4=10\\x+4=-10\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10-4\\x=\left(-10\right)-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6\\x=-14\end{matrix}\right.\)

Vậy \(x\in\left\{6;-14\right\}.\)

Chúc bạn học tốt!

12 tháng 10 2019

Bài 2:

a, \(\frac{72-x}{7}=\frac{x-40}{9}\)

\(\Rightarrow\left(72-x\right).9=\left(x-40\right).7\)

\(\Rightarrow9.72-9.x=7.x-7.40\)

\(\Rightarrow648-9x=7x-280\)

\(\Rightarrow-9x-7x=-280-648\)

\(\Rightarrow-16x=-648\)

\(\Rightarrow x=58\)

Vậy \(x=58\)

Bài 1: Thu gọn a) \(\frac{1}{5}x^4y^3-3x^4y^3\) b) \(5x^2y^5-\frac{1}{4}x^2y^5\) c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\) d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\) e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\) f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\) g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\) h)...
Đọc tiếp

Bài 1: Thu gọn

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)

d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)

e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)

f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)

g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)

h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)

i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)

k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)

n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)

m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)

p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)

1
26 tháng 7 2019

Bài 1:

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

= \(\left(\frac{1}{5}-3\right)x^4y^3\)

= \(-\frac{14}{5}x^4y^3.\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

= \(\left(5-\frac{1}{4}\right)x^2y^5\)

= \(\frac{19}{4}x^2y^5.\)

Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.

Chúc bạn học tốt!

29 tháng 7 2019

cảm ơn nha

chúc bạn học tốt

5 tháng 12 2019

\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}=\frac{1+2y+1+6y}{18+6x}=\frac{2+8y}{6\left(3+x\right)}=\frac{1+4y}{3\left(3+x\right)}\)

\(\Rightarrow3\left(3+x\right)=24\)\(\Rightarrow3+x=8\)\(\Rightarrow x=5\)

Vậy \(x=5\)

5 tháng 12 2019

Ta có: \(\frac{1+2y}{18}=\frac{1+4y}{24}\)

\(\Leftrightarrow24\left(1+2y\right)=18\left(1+4y\right)\)

\(\Leftrightarrow24+48y=18+72y\)

\(\Leftrightarrow24y-6=0\Leftrightarrow y=\frac{1}{4}\)

\(\Rightarrow\frac{1+2y}{18}=\frac{1+6y}{6x}\Leftrightarrow\frac{1+\frac{1}{2}}{18}=\frac{1+\frac{3}{2}}{6x}\)

\(\Leftrightarrow x=5\)

Vậy x = 5 và \(y=\frac{1}{4}\)

20 tháng 7 2017

\(\Rightarrow\)\(\frac{1+2y+1+4y+1+6y}{18+24+6x}\)=\(\frac{\left(1+1+1\right)+2y+4y+6y}{6\left(3+4+x\right)}=\frac{y\left(2+4+6\right)+3}{6\left(3+4+x\right)}=\frac{3+y.12}{6\left(7+x\right)}\)

=\(\frac{3\left(1+4y\right)}{3.2\left(7+x\right)}=\frac{1+4y}{14+2x}\)

\(\Rightarrow\)\(\frac{1}{14}=\frac{2y}{x}\Rightarrow x=14.2y=28y\)

\(\frac{x}{y}=28\)

11 tháng 11 2018

Ta có: \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}=\frac{1+2y+1+6y}{18+6x}=\frac{2\left(1+4y\right)}{6\left(x+3\right)}=\frac{1+4y}{3x+9}\)

\(=>\frac{1+4y}{24}=\frac{1+4y}{3x+9}\)\(=>3x+9=24\)

<=>3x=15

<=>x=5

Vậy x có giá trị bằng 5

Chúc bạn học tốt!