Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)
\(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)
\(=100.\frac{2}{101}=\frac{200}{101}\)
1. A = 75(42004 + 42003 +...+ 42 + 4 + 1) + 25
A = 25 . [3 . (42004 + 42003 +...+ 42 + 4 + 1) + 1]
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 3 + 1)
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 4)
A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)
A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
1) Vì theo đề bài \(\frac{x-2}{x-6}>0\Rightarrow x\ne0\)
Gọi phân số là \(\frac{a}{b}\)với \(a>b\) (vì tử số lớn hơn mẫu số thì phân số sẽ lớn hơn 1)
\(\Rightarrow x\ge6\)
2) Ta có: \(\frac{3x+9}{x-4}\) có giá trị nguyên . Với 3x + 9 > x - 4
Nếu x = 1 thì \(\frac{3x+9}{x-4}=\frac{31+9}{1-4}=\frac{40}{-31,3333}\) (loại)
Nếu x = 2 thì \(\frac{3x+9}{x-4}=\frac{32+9}{2-4}=\frac{41}{-2}=-20,5\) (loại)
Nếu x = 3 thì \(\frac{3x+9}{x-4}=\frac{33+9}{3-4}=\frac{42}{-1}=-42\)(chọn)
Nếu x = 4 thì \(\frac{3x+9}{x-4}=\frac{34+9}{4-4}=\frac{43}{0}\)(chọn)
Nếu x = 5 thì \(\frac{3x+9}{x-4}=\frac{35+9}{5-4}=\frac{44}{1}=44\)chọn
..và còn nhiều giá trị khác nữa...
Suy ra x = {-3 ; -4 ; -5 ; 3 ; 4 ; 5 ...}Tương tự ta có bảng sau:
x nguyên dương | 3 | 4 | 5 |
x nguyên âm | -3 | -4 | -5 |
Bài 3. Bí rồi, mình mới lớp 6 thôi!
bài 3: đạt B=\(\frac{1}{2}:\left(-1\frac{1}{2}\right):1\frac{1}{3}:\left(-1\frac{1}{4}\right):1\frac{1}{5}:\left(-1\frac{1}{6}\right)\):...:\(\left(-1\frac{1}{100}\right)\)
=\(\frac{1}{2}:\frac{-3}{2}:\frac{4}{3}:\frac{-5}{4}:\frac{6}{5}:\frac{-7}{6}:...:\frac{-101}{100}\)=\(\frac{1}{2}.\frac{-2}{3}.\frac{3}{4}.\frac{-4}{5}.\frac{5}{6}\frac{-6}{7}...\frac{-100}{101}\)(có 50 thừa số âm)
=\(\frac{1.2.3.4...100}{2.3.4...101}=\frac{1}{101}\)
vậy B=\(\frac{1}{101}\)
#HỌC TỐT#
1)\(A=\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)....\left(\frac{1}{2008}-1\right).\left(\frac{1}{2009}-1\right)=\left(-\frac{1}{2}\right)\left(-\frac{2}{3}\right)...\left(-\frac{2008}{2009}\right)=\frac{1.2.3...2008}{2.3.4....2009}=\frac{1}{2009}\)
2)\(A=\frac{x-7}{2}\)
Do 2>0 =>A>0 <=>x-7>0<=>x>7
Vậy x>7 thì A>0
3)\(A=\frac{x+3}{x-5}\)
Do x+3>x-5 =>A<0<=>x+3>0 và x-5<0
<=>-3<x<5
Vậy -3<x<5 thì A<0
Anh chỉ giải câu a thôi, câu b anh thấy nó bình thường mà.
Cộng vào mỗi phân số thêm 1 đơn vị được:
\(\frac{x+2013}{2009}+\frac{x+2013}{2010}=\frac{x+2013}{2011}+\frac{x+2013}{2012}\).
Tới đây tự làm tiếp nhá.
a, Ta có \(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}=\frac{x-4}{2008}\)
<=> \(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}-\frac{x-4}{2008}=0\)
<=> \(\left(\frac{x-1}{2011}-1\right)+\left(\frac{x-2}{2010}-1\right)-\left(\frac{x-3}{2009}-1\right)-\left(\frac{x-4}{2008}-1\right)=0\)
<=>\(\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
<=> \(\left(x-2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
Mà \(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\)
=> \(x-2012=0=>x=2012\)
b, \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2x-1\right)\left(2x+1\right)}=\frac{49}{99}\)
=>\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2x-1\right)\left(2x+1\right)}=2\cdot\frac{49}{99}\)
=>\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2x-1}-\frac{1}{2x+1}=\frac{98}{99}\)
=>\(1-\frac{1}{2x+1}=\frac{98}{99}\)
=>\(\frac{2x}{2x+1}=\frac{98}{99}\)
=>2x = 98
=>x = 49
1) a. Ta có:\(\frac{x+4}{2008}+\frac{x+3}{2009}=\frac{x+2}{2010}+\frac{x+1}{2011}\)
\(\Rightarrow\frac{x+4}{2008}+1+\frac{x+3}{2009}+1=\frac{x+2}{2010}+1+\frac{x+1}{2011}+1\)
\(\Rightarrow\frac{x+4+2008}{2008}+\frac{x+3+2009}{2009}=\frac{x+2+2010}{2010}+\frac{x+1+2011}{2011}\)
\(\Rightarrow\frac{x+2012}{2008}+\frac{x+2012}{2009}=\frac{x+2012}{2010}+\frac{x+2012}{2011}\)
\(\Rightarrow\left(x+2012\right)\left(\frac{1}{2008}+\frac{1}{2009}\right)=\left(x+2012\right)\left(\frac{1}{2010}+\frac{1}{2011}\right)\)
\(\Rightarrow\left(x+2012\right)\left(\frac{1}{2008}+\frac{1}{2009}\right)-\left(x+2012\right)\left(\frac{1}{2010}+\frac{1}{2011}\right)=0\)
\(\Rightarrow\left(x+2012\right)\left(\frac{1}{2008}+\frac{1}{2009}-\frac{1}{2010}-\frac{1}{2011}\right)=0\)
\(\Rightarrow x+2012=0\)
\(\Rightarrow x=-2012\)
Bài 2:
a.Ta có: \(\frac{x+2y}{18}=\frac{1+4y}{24}\)
\(\Rightarrow24x+48y=18+72y\)
\(\Rightarrow24x+48y-72y=18\)
\(\Rightarrow24x-24y=18\)
\(\Rightarrow24\left(x-y\right)=18\)
\(\Rightarrow x-y=\frac{3}{4}\)
\(\Rightarrow y=x-\frac{3}{4}\)
thay \(y=x-\frac{3}{4}\)vào \(\frac{1+4y}{24}=\frac{1+x+6y}{6x}\)ta được \(\frac{1+4\times\left(x-\frac{3}{4}\right)}{24}=\frac{1+x+6\times\left(x-\frac{3}{4}\right)}{6x}\)
giải ra ta được x=7
\(\Rightarrow y=7-\frac{3}{4}=\frac{25}{4}\)
b. Đẻ A mang giá trị nuyên
\(\Leftrightarrow9+3n⋮n-4\)
\(\Leftrightarrow3n-12+21⋮n-4\)
\(\Leftrightarrow3\left(n-4\right)+21⋮n-4\)
\(\Leftrightarrow21⋮n-4\)
\(\Leftrightarrow n-4\inƯ_{\left(21\right)}=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)
Ta có bảng sau:
-21
Vậy \(n\in\left\{5;4;7;1;11;-3;25;-17\right\}\)thì A là số nguyên.
Thay n vào A và tính giá trị