Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(=) \(2\sqrt{2}+\sqrt{x.\left(x+1\right)}=\sqrt{\left(x+1\right)\left(x+9\right)}\)(nhân cả 2 vế cho \(\sqrt{x+1}\) ).
(=) \(8+4\sqrt{2x\left(x+1\right)}+x\left(x+1\right)=\left(x+1\right)\left(x+9\right)\) \(\Leftrightarrow4\sqrt{2x^2+2x}=x^2+10x+9-x^2-x-8\)
(=) \(4\sqrt{2x^2+2x}=9x+1\) (=) \(16\left(2x^2+2x\right)=81x^2+18x+1\)(=) \(0=49x^2-14x+1\)
(=)\(\left(7x-1\right)^2=0\) (=) \(x=\frac{1}{7}\)
\(x=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+....}}}}}\)
\(\Rightarrow x^2=5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+...}}}}\)
\(\Rightarrow x^4=25+10\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+....}}}}+13+\sqrt{5+\sqrt{13+\sqrt{5+...}}}\)
\(\Leftrightarrow x^4=38+10x^2+x\)
\(\Leftrightarrow x^4-10x^2-x-38=0\)
giải ra tìm x xong
\(a,=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\left(\sqrt{20}-3\right)}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-\sqrt{20}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}\)
\(=\sqrt{1}=1\)
b,c
\(\sqrt{13+4\sqrt{3}}=\sqrt{13+2\sqrt{12}}=\sqrt{12}+1=2\sqrt{3}+1\)
=>BT=\(\sqrt{5-\left(2\sqrt{3}+1\right)}+\sqrt{3+\left(2\sqrt{3}+1\right)}\)
\(=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
c,\(=\sqrt{1+\sqrt{3+2\sqrt{3}+1}}+\sqrt{1-\sqrt{3-\left(2\sqrt{3}-1\right)}}\)
\(=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
\(=\frac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
Nhận thấy: \(y>2\)
Ta xét:
\(y^2=5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+...}}}}\)
\(\Rightarrow\) \(\left(y^2-5\right)^2=13+y\)
\(\Leftrightarrow\) \(y^4-10y^2-y+12=0\)
\(\Leftrightarrow\) \(\left(y^4-9y^2\right)-\left(y^2-9\right)-\left(y-3\right)=0\)
\(\Leftrightarrow\) \(\left[\left(y+3\right)\left(y+1\right)\left(y-1\right)-1\right]\left(y-3\right)=0\)
Mà \(y>2\) nên \(\left[\left(y+3\right)\left(y+1\right)\left(y-1\right)-1\right]>0\)
Do đó, ta dễ dàng suy ra \(y-3=0\) hay \(y=3\)
Cho sửa phần mẫu số của câu trên thành \(\sqrt{6}+\sqrt{2}\)
\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-|2\sqrt{3}+1|}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{4+2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+|\sqrt{3}-1|}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{2}.\sqrt{4+2\sqrt{3}}}{\sqrt{2}\left(\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}\)
\(=\frac{\sqrt{3}+1}{\sqrt{3}+1}=1\)