Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
đặt \(a=\sqrt{2+\sqrt{x}}\),\(b=\sqrt{2-\sqrt{x}}\)\(\left(a,b>0\right)\)
có \(a^2+b^2=4\)
pt thành \(\frac{a^2}{\sqrt{2}+a}+\frac{b^2}{\sqrt{2}-b}=\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}\left(a^2+b^2\right)-ab\left(a-b\right)=\sqrt{2}\left(\sqrt{2}+a\right)\left(\sqrt{2}-b\right)\)
\(\Leftrightarrow2\sqrt{2}+\sqrt{2}ab-ab\left(a-b\right)-2\left(a-b\right)=0\)
\(\Leftrightarrow\left(ab+2\right)\left(\sqrt{2}-a+b\right)=0\)
vì a,b>o nên \(a-b=\sqrt{2}\)
\(\Rightarrow\sqrt{2+\sqrt{x}}-\sqrt{2-\sqrt{x}}=\sqrt{2}\)
Bình phương 2 vế:
\(4-2\sqrt{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=2\)
\(\Leftrightarrow\sqrt{4-x}=1\)
\(\Rightarrow x=3\)
\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(\sqrt{x^2+7x+10}+1\right)=3\)
\(\Leftrightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(\sqrt{\left(x+5\right)\left(x+2\right)}+1\right)=3\)
Đặt \(\hept{\begin{cases}\sqrt{x+5}=a\left(a\ge0\right)\\\sqrt{x+2}=b\left(b\ge0\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^2-b^2=3\\\left(a-b\right)\left(ab+1\right)=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2-b^2=3\\\left(a-b\right)\left(ab+1-a-b\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2-b^2=3\\\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\end{cases}}\)
Với a = b thì
\(\sqrt{x+5}=\sqrt{x+2}\Leftrightarrow0x=3\left(l\right)\)
Với a = 1 thì
\(\sqrt{x+5}=1\Leftrightarrow x=-4\left(l\right)\)
Với b = 1 thì
\(\sqrt{x+2}=1\Leftrightarrow x=-1\)
Đặt x^2+3x=a
=>\(a+2=3\sqrt{a}\)
=>a-3 căn a+2=0
=>(căn a-1)(căn a-2)=0
=>a=1 hoặc a=4
=>x^2+3x=1 hoặc x^2+3x=4
=>(x+4)(x-1)=0 và x^2+3x-1=0
=>\(x\in\left\{1;-4;\dfrac{-3+\sqrt{13}}{2};\dfrac{-3-\sqrt{13}}{2}\right\}\)
Đk : \(x\ge\frac{3}{4}\)
\(x-\sqrt{4x-3}=2\)
\(x-2=\sqrt{4x-3}\)
\(\Rightarrow\left(x-2\right)^2=\left(\sqrt{4x-3}\right)^2\)
\(x^2-4x+4=4x-3\)
\(x^2-8x+7=0\)
\(\Delta=36\Rightarrow\sqrt{\Delta}=6\)
\(\Rightarrow\)Phương trình có hai nghiệm phân biệt :
\(x_1=1\left(tm\right)\)
\(x_2=7\left(tm\right)\)
\(\sqrt{5x^2-2x\sqrt{5}+1}=\sqrt{6-2\sqrt{5}}\)
\(\Leftrightarrow\)\(5x^2-2x\sqrt{5}+1=6-2\sqrt{5}\)
\(\Leftrightarrow\)\(\left(x\sqrt{5}-1\right)^2=\left(\sqrt{5}-1\right)^2\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x\sqrt{5}-1=\sqrt{5}-1\\x\sqrt{5}-1=1-\sqrt{5}\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=\frac{2-\sqrt{5}}{\sqrt{5}}\end{cases}}\)
Vậy...
ĐK: \(x\ge\frac{3}{4}\)
\(x-\sqrt{4x-3}=2\)
\(\Leftrightarrow\)\(\sqrt{4x-3}=x-2\)
\(\Leftrightarrow\)\(4x-3=x^2-4x+4\)
\(\Leftrightarrow\)\(x^2-8x+7=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x-7\right)=0\)
đến đây tự làm
a: \(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{24}{x-3}-\dfrac{10}{y+2}=126\\\dfrac{24}{x-3}+\dfrac{45}{y+2}=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-55}{y+2}=165\\\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+2=\dfrac{-1}{3}\\\dfrac{12}{x-3}=48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{7}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)
Do \(x^6-x^3+x^2-x+1=\left(x^3-\dfrac{1}{2}\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\) ; \(\forall x\) nên BPT tương đương:
\(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\ge0\)
\(\Leftrightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}\le\sqrt{26}\) (1)
Ta có:
\(VT=\sqrt{\left(2x-1\right)^2+3^2}+\sqrt{\left(2-2x\right)^2+2^2}\ge\sqrt{\left(2x-1+2-2x\right)^2+\left(3+2\right)^2}=\sqrt{26}\) (2)
\(\Rightarrow\left(1\right);\left(2\right)\Rightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}=\sqrt{26}\)
Dấu "=" xảy ra khi và chỉ khi \(2\left(2x-1\right)=3\left(2-2x\right)\Leftrightarrow x=\dfrac{4}{5}\)
Vậy BPT có nghiệm duy nhất \(x=\dfrac{4}{5}\)
đặt x-1=a;5-x=b
ta có 2a+3b=2căn13
a+b=4