Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Câu\text{ }4:\\ Ta\text{ }có:\text{(x^2 – 3x + 2) + (4x^3– x^2+ x – 1)}\\ =x^2-3x+2+4x^3-x^2+x-1\\ =\text{4x}^3+\left(x^2-x^2\right)+\left(-3x+x\right)+\left(2-1\right)\\ =4x^3-2x+1\)
\(Câu\text{ }5:Đặt\text{ }tính\text{ }trừ\text{ }như\text{ }sau:\)
1) \(|5x-3|=|7-x|\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3=7-x\\5x-3=x-7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}6x=10\\4x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}\)
Vậy...
2) \(2.|3x-1|-3x=7\)
\(\Leftrightarrow2.|3x-1|=7+3x\)
\(\Leftrightarrow\orbr{\begin{cases}2.\left(3x-1\right)=7+3x\\2.\left(3x-1\right)=-7-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}6x-2=7+3x\\6x-2=-7-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=9\\9x=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{9}\end{cases}}\)
Vậy...
\(a,\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{5}=0\\\dfrac{8}{5}+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=\dfrac{4}{5}\end{matrix}\right.\)
\(b,\dfrac{x-\dfrac{4}{7}}{x+\dfrac{1}{2}}>0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{4}{7}>0\\x+\dfrac{1}{2}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{4}{7}< 0\\x+\dfrac{1}{2}< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{4}{7}\\x< -\dfrac{1}{2}\end{matrix}\right.\)
\(c,\dfrac{2x-3}{x+\dfrac{7}{4}}< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-3< 0\\x+\dfrac{7}{4}>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-3>0\\x+\dfrac{7}{4}< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x >-\dfrac{7}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x< -\dfrac{7}{4}\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-\dfrac{7}{4}< x< \dfrac{3}{2}\\x\in\varnothing\end{matrix}\right.\Leftrightarrow-\dfrac{7}{4}< x< \dfrac{3}{2}\)
a) `(x-8)(x^3+8)=0`
`<=>(x-8)(x+2)(x^2-2x+4)=0`
`<=>` \(\left[ \begin{array}{l}x=8\\x=-2\end{array} \right.\) (Vì `x^2-2x+4 \ne 0 forall x)`
Vậy `A={8;-2}`.
b) `(4x-3)-(x+5)=3(10-x)`
`,=>4x-3-x-5=30-3x`
`<=>3x-8=30-3x`
`<=>6x=38`
`<=>x=19/3`
Vậy `S={19/3}`.
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
a, Thay x=-3 vào A ta có:
\(A=2x^2-6x=2.\left(-3\right)^2-6.\left(-3\right)=2.9+6.3=18+18=39\)
Thay x=4 vào A ta có:
\(A=2x^2-6x=2.4^2-6.4=2.16-24=32-24=8\)
b, \(A=0\)
\(\Leftrightarrow2x^2-6x=0\\ \Leftrightarrow2x\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
c, \(A=4x\)
\(\Leftrightarrow2x^2-6x=4x\\ \Leftrightarrow2x^2-10x=0\\ \Leftrightarrow2x\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
a, Thay x = -3 vào A ta được
\(A=2.9-6.4=18-24=-6\)
Thay x = 4 vào A ta được
\(A=2.16-6.4=32-24=6\)
b, Ta có \(A=2x\left(x-3\right)=0\Leftrightarrow x=0;x=3\)
c, Ta có \(A=2x^2-10x=0\Leftrightarrow2x\left(x-5\right)=0\Leftrightarrow x=0;x=5\)
a) làm mẫu cho cả phần b lun
\(|2x-5|+|2,5-x|=0\left(1\right)\)
Ta có: \(2x-5=0\Leftrightarrow x=\frac{5}{2}\)
\(2,5-x=0\Leftrightarrow x=2,5=\frac{5}{2}\)
Lập bảng xét dấu :
+) Với \(x< \frac{5}{2}\Rightarrow\hept{\begin{cases}2x-5< 0\\2,5-x< 0\end{cases}\Rightarrow}\hept{\begin{cases}|2x-5|=5-2x\\|2,5-x|=x-2,5\end{cases}}\left(2\right)\)
Thay (2) vào (1) ta được :
\(5-2x+x-2,5=0\)
\(-x+\frac{5}{2}=0\)
\(x=\frac{5}{2}\)( loại )
+) Với \(x\ge\frac{5}{2}\Rightarrow\hept{\begin{cases}2x-5\ge0\\2,5-x\ge0\end{cases}\Rightarrow}\hept{\begin{cases}|2x-5|=2x-5\\|2,5-x|=2,5-x\end{cases}}\left(3\right)\)
Thay (3) vào (1) ta được :
\(2x-5+2,5-x=0\)
\(x-\frac{5}{2}=0\)
\(x=\frac{5}{2}\)( chọn )
Vậy \(x=\frac{5}{2}\)
a) |2x - 5| + |2,5 - x| = 0
2x - 5 = 0 hoặc 2,5 - x = 0
2x = 0 + 5 -x = 0 - 2,5
2x = 5 -x = -2,5
x = 2,5 x = 2,5
=> x = 2,5
b) |x - 1,5| + |x + 3| = 0
x - 1,5 = 0 hoặc x + 3 = 0
x = 0 + 1,5 x = 0 - 3
x = 1,5 x = -3
=> x = 1,5 hoặc x = -3
c) (5x - 2)2 = 1
(5x - 2)2 = 12
5x - 2 = 1; -1
5x - 2 = 1 hoặc 5x - 2 = -1
5x = 1 + 2 5x = -1 + 2
5x = 3 5x = 1
x = 3/5 x = 1/5
=> x = 3/5 hoặc x = 1/5
d) (4x - 1)3 + 7 = -20
(4x - 1)3 = -20 - 7
(4x - 1)3 = -27
(4x - 1)3 = (-3)3
4x - 1 = -3
4x = -3 + 1
4x = -2
x = -2/4 = -1/2