Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn sẽ có: 2x^2/(1-x^2) - y = 0 => -2x^2/(x^2 -1) = y => 2x^2/(x^2 - 1) = - y. hay 2 + 2/(x^2 - 1) = -y(1). chứng minh tương tự bạn sẽ có 2y^2/(1-y^2)-z = 0 + => 2 + 2/(y^2-1) = -z(2) và 2z^2/(1-z^2) - x = 0 => 2 + 2/(z^2 -1) = - x(3).bạn đặt x^2 - 1 = a. y^2 - 1 = b. z^2 - 1 = c. => thế vào (1) (2) (3) bạn sẽ có:
2 + 2/b = -căn(c + 1)
2 + 2/a = - căn(b + 1)
2 + 2/c = - căn(a +1)
đặt căn (c+1) = m. căn (b +1) = n. căn (a + 1) = p thay vào hpt sẽ có:
2 + 2/b = -m
2 + 2/a = -n
2 +2/c = -p
giải hệ phương trình này ra bạn sẽ ra được a, b , c và từ đó bạn sẽ tìm ra được x ,y,z còn lại bạn tự làm nốt nhé. Tớ lười tính quá :|
\(M=\frac{x+y}{xy}.\frac{1}{z}\ge\frac{2\sqrt{xy}}{xy}.\frac{1}{z}=\frac{2}{z\sqrt{xy}}\ge\frac{2}{z\left(\frac{x+y}{2}\right)}=\frac{4}{z\left(x+y\right)}\)
\(=\frac{4}{z\left(1-z\right)}=\frac{4}{\frac{1}{4}-\left(z-\frac{1}{2}\right)^2}\ge16\)
Min M= 16 khi z=1/2 và x=y =1/4.
Áp dụng bđt côsi ta có:
\(\hept{\begin{cases}\sqrt{\left(x+y\right)4}\le\frac{x+y+4}{2}\left(1\right)\\\sqrt{\left(z+y\right)4}\le\frac{y+z+4}{2}\left(2\right)\\\sqrt{\left(z+x\right)4}\le\frac{z+x+4}{2}\left(3\right)\end{cases}}\)
Lấy \(\left(1\right)+\left(2\right)+\left(3\right)\)ta được:
\(2P\le x+y+z+6=12\)
\(\Leftrightarrow p\le6\)
Dấu"="xảy ra \(\Leftrightarrow x=y=z=2\)
Vậy \(P_{max}=6\)\(\Leftrightarrow x=y=z=2\)
<=>\(4\left(x^2+y^2+z^2+t^2\right)=4x\left(y+z+t\right)\)
<=> \(4x^2+4y^2+4z^2+4t^2=4xy+4xt+4xz\)
áp dụng BĐT cô -si
\(x^2+4y^2\ge4xy\) (1)
\(x^2+4z^2\ge4xz\) (2)
\(x^2+4t^2\ge4xt\) (3)
Từ (1) (2) và (3) => \(4x^2+4y^2+4z^2+4t^2\ge3x^2+4y^2+4z^2+4t^2\ge4x\left(y+z+t\right)\)
<=> \(x^2+y^2+z^2+t^2\ge x\left(y+z+t\right)\)
Dấu '' = '' xảy ra khi x = 0 ; x = 2y ; x = 2z ; x = 2t
<=> x = y = z = t= 0
\(\Leftrightarrow9x^2+3\left(x^2+2xy+y^2\right)=28\left(x+y\right)\)
\(\Leftrightarrow9x^2+3\left(x+y\right)^2=28\left(x+y\right)\)
\(\Leftrightarrow9x^2=-3\left(x+y\right)^2+28\left(x+y\right)\)
\(\Leftrightarrow9x^2=-3\left(x+y-\frac{14}{3}\right)^2+\frac{196}{3}\le\frac{196}{3}\)
\(\Rightarrow x^2\le7\Rightarrow x^2=\left\{0;1;4\right\}\Rightarrow x=\left\{-2;-1;0;1;2\right\}\)
Thế vào pt ban đầu để tìm y nguyên