Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|X| + |Y| = 3
Với X, Y > 0 thì: |2| + |1| =3
vậy X= 2. Y=1 và ngược lại X= 1, Y=2
Với X,Y <0 thì: |-2| + |-1| =3
vậy X= -2, Y= -1 và ngược lại
Với X >0, Y<0 thì |2| + |-1| =3
vậy X=2, Y=-1 và ngược lại với X<0, Y>0
Với X hoặc Y = 0 thì có các nghiệm (X;Y)= (0;3), (0;-3), (3;0), (-3;0)
Đáng lẻ là gì nè :
| x | + | y | = 3
Ta có :
Thay x = -2
y = -1
=> | -2 | + | - 1 | = | -3 | = 3
(2x - 5) - (x - 6) = 3y
=> 2x - 5 - x + 6 = 3y
=> x + 1 = 3y
..Bạn xem lại đề nhé vì có vô số cặp (x;y) thỏa ==''
Vd: x = 0 thì y = 0; x = 2 thì y = 1; x = 8 thì y = 2; x = 26 thì y = 3...
=> 2x-5-x+6=3y
=> 2x-x-5+6=3y
=> x+1=3y
=> x+1 chia hết cho 3 => 3 thuộc Ư(x+1)
=> x+1 là B(3) => B(3)={3;6;9;12;-3;-6;-9;-12;15;-15;...............}
Mà x+1=3y => x+1 vừa chia hết cho 3 vừa phải = 3y
=> x+1={0;3;-3;9;-9;..}
Vô hạn pạn ạ!
Bài 1 : Tính nhanh
a) 16.(38−2)−38(16−1)16.(38−2)−38(16−1)
b) (−41).(59+2)+59(41−2)(−41).(59+2)+59(41−2)
Bài 2 :
Tìm các số x ; y ; x biết rằng :
x + y = 2 ; y + z = 3 ; z + x = -5
Bài 3 : Tìm x ; y ∈∈ Z biết rằng :
( y + 1 ) . xy - 1 ) = 3
j toàn chữ là chữ vậy trời , làm tớ hoa hết cả mắt !!@@@@@@@
Ta có :
\(x\left(y+3\right)=\frac{7y-21}{7\left(y+3\right)}=0\)
\(x\left(y+3\right)=\frac{7\left(y-3\right)}{7\left(y+3\right)}=0\)
\(x\left(y+3\right)=\frac{y-3}{y+3}=0\)
\(\Rightarrow x\left(y+3\right)=0\)
+) \(\Rightarrow\orbr{\begin{cases}x=0\\y+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\y=-3\end{cases}}\)
+) \(\Rightarrow\frac{y-3}{y+3}=0\Rightarrow y-3=0\Rightarrow y=3\)
Vậy \(x=0;y\in\left\{-3;3\right\}\)
Ủng hộ mk nha !!! ^_^
Ta có : \(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)
mà \(\hept{\begin{cases}\left(x-y^2+z\right)^2\ge0\\\left(y-2\right)^2\ge0\\\left(z+3\right)^2\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-y^2+z=0\\y-2=0\\z+3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y^2-z=2^2-\left(-3\right)=7\\y=2\\z=-3\end{cases}}\)
\(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)
Do \(\hept{\begin{cases}\left(x-y^2+z\right)^2\ge0\\\left(y-2\right)^2\ge0\\\left(z+3\right)^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\y=2\\z=-3\end{cases}\Leftrightarrow\hept{\begin{cases}\left[x-2^2+\left(-3\right)\right]^2=0\\y=2\\z=-3\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\y=2\\z=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\\z=-3\end{cases}}}\)
Vậy ...
|x| + |y| = 3 = 1 + 2 = 2 + 1 = 0 + 3 = 3 + 0
Xét 4 trường hợp nêu trên , ta có :
\(\left(1\right)\hept{\begin{cases}\left|x\right|=1\\\left|y\right|=2\end{cases}\Rightarrow\hept{\begin{cases}-1\le x\le1\\-2\le y\le2\end{cases}}}\)
\(\left(2\right)\hept{\begin{cases}\left|x\right|=2\\\left|y\right|=1\end{cases}}\Rightarrow\hept{\begin{cases}-2\le x\le2\\-1\le y\le1\end{cases}}\)
\(\left(3\right)\hept{\begin{cases}\left|x\right|=0\\\left|y\right|=3\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\-3\le y\le3\end{cases}}\)
\(\left(4\right)\hept{\begin{cases}\left|x\right|=3\\\left|y\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}-3\le x\le3\\y=0\end{cases}}\)
Tất cả 4 trường hợp , không cái nào liên quan tới nhau