Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+3x^2+3x=0\\ \Leftrightarrow x\left(x^2+3x+3\right)=0\\ \Leftrightarrow x=0\left(x^2+3x+3=x^2+3x+\dfrac{9}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0\right)\)
\(x^3+3x^2+3x=0\)
\(\Rightarrow x\left(x^2+3x+3\right)=0\)
Mà: \(x^2+3x+3>0\)
=> x = 0
1) \(3x\left(x-4\right)-x+4=0\)
\(\Rightarrow3x\left(x-4\right)-\left(x-4\right)=0\)
\(\Rightarrow\left(x-4\right)\left(3x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{3}\end{matrix}\right.\)
2) \(2x\left(2x+3\right)-2x-3=0\)
\(\Rightarrow2x\left(2x+3\right)-\left(2x+3\right)=0\)
\(\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(3x\left(x-4\right)-x+4=0\\ \Leftrightarrow\left(x-4\right)\left(3x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{3}\end{matrix}\right.\\ 2x\left(2x+3\right)-2x-3=0\\ \Leftrightarrow\left(2x+3\right)\left(2x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(a.\left(2x-1\right)^2-\left(4x-3\right)\left(x+5\right)=0\) \(\Leftrightarrow4x^2-4x+1-\left(4x^2+17x-15\right)=0\)
\(\Leftrightarrow-21x+16=0\Leftrightarrow x=\dfrac{16}{21}\) . Vậy ...
b.\(x\left(x-1\right)=3\left(x-1\right)\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\) . Vậy ...
c.\(\left(x-1\right)\left(3x-7\right)=\left(x-1\right)\left(x+3\right)\Leftrightarrow\left(x-1\right)\left(3x-7-x-3\right)=0\)
\(\Leftrightarrow2\left(x-1\right)\left(x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\) . Vậy ...
d.\(\left(x-3\right)^2+2x-6=0\Leftrightarrow\left(x-3\right)\left(x-3+2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\) . Vậy ...
a) \(x^3+3x^2+3x=0\Rightarrow x\left(x^2+3x+3\right)=0\Rightarrow x\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\right]=0\Rightarrow x=0\)
(do \(\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\))
b) \(x^3+6x^2+12x=0\Rightarrow x\left(x^2+6x+12\right)=0\Rightarrow x\left[\left(x+3\right)^2+4\right]=0\Rightarrow x=0\)
(do (x+3)2+4≥4>0)
a: Ta có: \(x^3+3x^2+3x=0\)
\(\Leftrightarrow x\left(x^2+3x+3\right)=0\)
hay x=0
b: Ta có: \(x^3+6x^2+12x=0\)
\(\Leftrightarrow x\left(x^2+6x+12\right)=0\)
hay x=0
đặt \(t=x^2\) (t\(\ge\)0) pt thành \(t^2-3t-28\)=0<=>(t-7)(t+4)=0
=>\(\left[{}\begin{matrix}t=7\\t=-4\end{matrix}\right.\)so với điều kiện=>t=7
=>\(x^2=7\)<=>\(\left[{}\begin{matrix}x=\sqrt{7}\\x=-\sqrt{7}\end{matrix}\right.\)
KL: S=\(\pm\sqrt{7}\)
x^4-3x^2-28=0
=>x^4 - 7x^2 + 4x^2 - 28=0
=>x^2(x^2 - 7) + 4(x^2 - 7)=0
=>(x^2 - 7)(x^2 + 4)=0
=>x^2 - 7=0 hoặc x^2 + 4=0
=>x^2=7 hoặc x^2= -4
=>x=căn 7 hoặc không có x thỏa mãn
KẾT LUẬN
Mình không chắc lắm, nếu có sai thì cho mình xin lỗi nha
CHÚC BẠN HỌC TÔT
\(3x+2\left(5-x\right)=0\Leftrightarrow3x+10-2x=0\Leftrightarrow x=-10\)
a)\(2x^2\)+\(3\left(x^2-1\right)\)=\(5x\left(x+1\right)\)
\(2x^2\)+\(3x^2\)\(-3\)=\(5x^2+5x\)
\(5x^2-5x^2-5x=3\)
\(-5x=3\)
\(x=\frac{-3}{5}\)
tự ghi dấu suy ra ở đằng trước nhé
b) Vì \(2x\left(5-3x\right)=2x\left(3x-5\right)-3\left(x-7\right)=3\)
nên chỉ cần giải: \(6x^2-10x-3x+21=3\)
\(\Leftrightarrow6x^2-13x+21=3\)
\(\Leftrightarrow6x^2-13x+18=0\)
\(\Rightarrow\)pt vô nghiệm
\(\dfrac{3-3x}{\left(1+x\right)^2}:\dfrac{6x^2-6}{x+1}\)
\(=\dfrac{3\left(1-x\right)}{\left(x+1\right)^2}:\dfrac{6\left(x^2-1\right)}{x+1}\)
\(=\dfrac{-3\left(x-1\right)}{\left(x+1\right)^2}:\dfrac{6\left(x+1\right)\left(x-1\right)}{x+1}\)
\(=\dfrac{-3\left(x-1\right)}{\left(x+1\right)^2}\cdot\dfrac{x+1}{6\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{-3\left(x-1\right)\left(x+1\right)}{6\left(x+1\right)^3\left(x-1\right)}=\dfrac{-3\left(x+1\right)}{6\left(x+1\right)\left(x+1\right)^2}=\dfrac{-3}{6\left(x+1\right)^2}=\dfrac{-1}{2\left(x+1\right)^2}\)
b) Bạn có thể viết kiểu latex được không ạ ?
\(\Rightarrow\left(3x+1\right)\left(x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x+1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-1\end{matrix}\right.\)
Nhanh thế anh, lượn qua lượn lại mới có câu mà bị cướp mất :(