Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Từ \(x\cdot2y=\dfrac{2x}{y}\Rightarrow2x=x\cdot2y^2\)
Do \(x,y\ne 0\) nên \(2=2y^2\Rightarrow y^2=1\Rightarrow y=\pm1\)
*)Xét \(y=1\Rightarrow3x-2=2x\Rightarrow x=2\)
*)Xét \(y=-1\Rightarrow3x+2=-2x\Rightarrow x=-\dfrac{2}{5}\)
b)\(\left|4x-3\right|+\left|3xy-5\right|=0\)
Dễ thấy: \(\left\{{}\begin{matrix}\left|4x-3\right|\ge0\\\left|3xy-5\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|4x-3\right|+\left|3xy-5\right|\ge0\)
Xảy ra khi \(\left\{{}\begin{matrix}\left|4x-3\right|=0\\\left|3xy-5\right|=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}4x-3=0\\3xy-5=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\3xy-5=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=\dfrac{20}{9}\end{matrix}\right.\)
ĐKXĐ: \(x\ge-3\)
\(\Leftrightarrow\left(x+1\right)^3+\left(3x^2+6x+3-4\left(x+3\right)\right)\sqrt{x+3}=0\)
Đặt \(\left\{{}\begin{matrix}x+1=a\\\sqrt{x+3}=b\end{matrix}\right.\)
\(\Rightarrow a^3+\left(3a^2-4b^2\right)b=0\)
\(\Leftrightarrow a^3+3a^2b-4b^3=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+2b\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\2b=-a\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=x+1\left(x\ge-1\right)\\2\sqrt{x+3}=-x-1\left(x\le-1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=x^2+2x+1\\4\left(x+3\right)=x^2+2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2-2x-11=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=1-2\sqrt{3}\end{matrix}\right.\)
\(P=3x+2y+\dfrac{6}{x}+\dfrac{8}{y}=\dfrac{3x}{2}+\dfrac{6}{x}+\dfrac{y}{2}+\dfrac{8}{y}+\dfrac{3}{2}\left(x+y\right)\)
\(\Rightarrow P\ge2\sqrt{\dfrac{3x}{2}.\dfrac{6}{x}}+2\sqrt{\dfrac{y}{2}.\dfrac{8}{y}}+\dfrac{3}{2}.6=19\)
\(\Rightarrow P_{min}=19\) khi \(\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
(x-3)(3x-9)=0
<=>(x-3)3(x-3)=0
=>x-3=0=>x=3