Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\frac{3}{7}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)
\(=\frac{3\times\frac{1}{7}-3\times\frac{1}{11}+3\times\frac{1}{13}}{5\times\frac{1}{7}-5\times\frac{1}{11}+5\times\frac{1}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}\times\frac{1}{2}-\frac{5}{2}\times\frac{1}{3}+\frac{5}{2}\times\frac{1}{4}}\)
\(=\frac{3\times\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}{5\times\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)
\(=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)
\(=\frac{3}{5}+1\div\frac{5}{2}\)
\(=\frac{3}{5}+1\times\frac{2}{5}\)
\(=\frac{3}{5}+\frac{2}{5}\)
\(=\frac{5}{5}\)
\(=1\)
ta có \(\frac{\frac{3}{7}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}=\frac{3\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}=\frac{3}{5}\)
và \(\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}+\frac{5}{8}-\frac{5}{6}}=\frac{2\left(\frac{1}{2.2}-\frac{1}{3.2}+\frac{1}{4.2}\right)}{5\left(\frac{1}{4}+\frac{1}{8}-\frac{1}{6}\right)}=\frac{2\left(\frac{1}{4}+\frac{1}{8}-\frac{1}{6}\right)}{5\left(\frac{1}{4}+\frac{1}{8}-\frac{1}{6}\right)}=\frac{2}{5}\)
Vậy \(\frac{\frac{3}{7}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}+\frac{5}{8}-\frac{5}{6}}=\frac{3}{5}+\frac{2}{5}=\frac{5}{5}=1\)
ĐS: 1
\(A=\left(-\frac{5}{11}\right).\frac{7}{15}+\frac{11}{-5}.\frac{30}{33}\)
\(A=-\frac{7}{33}+-2\)
\(A=-\frac{73}{33}\)
[ A] = -2
\(\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)
\(=\frac{\frac{21}{44}+\frac{3}{13}}{\frac{20}{77}+\frac{5}{13}}+\frac{\frac{1}{6}+\frac{1}{4}}{\frac{5}{12}+\frac{5}{8}}\)
\(=\frac{\frac{405}{572}}{\frac{645}{1001}}+\frac{\frac{5}{12}}{\frac{25}{24}}\)
\(=\frac{1289}{860}\)
Bài 1 :
Ta có :
\(A=\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)
\(A=\frac{3\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)
\(A=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)
\(A=\frac{3}{5}+\frac{2}{5}\)
\(A=1\)
\(b)\) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Đo đó :
\(\frac{y+z-x}{x}=2\)\(\Rightarrow\)\(y+z=3x\)\(\left(1\right)\)
\(\frac{z+x-y}{y}=2\)\(\Rightarrow\)\(x+z=3y\)\(\left(2\right)\)
\(\frac{x+y-z}{z}=2\)\(\Rightarrow\)\(x+y=3z\)\(\left(3\right)\)
Lại có : \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)
Thay (1), (2) và (3) vào \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\) ta được :
\(B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)
Vậy \(B=8\)
Chúc bạn học tốt ~
bạn phùng minh quân câu 1 a tại sao lại rút gọn được \(\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}=\frac{3}{5}\) vậy nó không cùng nhân tử mà
câu b \(\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{\left(y-y+y\right)+\left(-x+x+x\right)+\left(z+z-z\right)}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)sao lại ra bằng 2
(mình chỉ góp ý thôi nha tại mình làm thấy nó sai sai)
x=3/7 nha ban !!! K TUI NHA
X=3/7:5/7-3/11:5/11+3/13:5/13
+
1/2:5/4-1/3+1/4:5/6
=3/5-3/5+3/5 + 2/5-1/3+3/10
=3/5 + 11/10
=17/10