Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4n+3 chia hết cho 3n-2
<=> 3(4n+3)-4(3n-2) chia hết cho 3n-2
<=>17 chia hết cho 3n-2
<=>3n-2 E {-1;1;17;-17}
<=> 3n E {1;3;19;-15} loại các TH n ko nguyên
=>n E {1;-5}. Vậy.....
2n-3 chia hết cho n+1
=> 2n+2-5 chia hết cho n+1
=> 2(n+1)-5 chia hết cho n+1
Mà 2(n+1) chia hết cho n+1 => 5 chia hết cho n+1
=> n+1 thuộc Ư(5) ={1;-1;5;-5}
TH1: n+1=1 => n=0 thuộc Z
TH2: n+1=-1 => n=-2 thuộc Z
TH3: n+1=5 => n=4 thuộc Z
TH4: n+1=-5 => n=-6 thuộc Z
=> n thuộc {0;-2;4;6}
a\ -2.[n-1]+5 chia het chon n-1
vi -2.[n-1] chia het cho n-1 nen 5 chia het cho n-1
vay n-1 thuoc uoc cua 5 thuoc -1;1;-5;5
thay n-1 vao tung uoc cua 5
b\vi 3n+2 chia het cho 2n-3 nen 2[3n+2] cung chia het cho 2n-3
=6n+4 chia het cho 2n-3
3.[2n-3]+13 chia het cho 2n-3
vi 3[2n-3] chia het cho 2n-3 nen 13 cung chia het cho 2n -3
thay 2n-3 vao tung uoc cua 13 de tim ra n
oke
a)-2n+3 chia hết cho n-1
\(\Rightarrow\)(-2n+3)--2(n-1)chia hết cho n-1
\(\Rightarrow\)(-2n+3)+2(n-1)chia hết cho n-1
\(\Rightarrow\)-2n+3+2n-2chia hết cho n-1
\(\Rightarrow\)(-2n+2n)+(3-2)chia hết cho n-1
\(\Rightarrow\)1 chia hết cho n-1
từ đây tự tính
b)3n+2 chia hết cho 2n-3
\(\Rightarrow\)2(3n+2)-3(2n-3) chia hết cho 2n-3
\(\Rightarrow\)(6n+4)-(6n-9) chia hết cho 2n-3
\(\Rightarrow\)6n+4-6n+9 chia hết cho 2n-3
\(\Rightarrow\)13 chia hết cho 2n -3
sau đó lập bảng ra
kq:n=2:n=1:n=8:n=-5
Help me
2n-3 chia hết cho n+1
=> 2n+2-5 chia hết cho n+1
=>2(n+1)-5 chia hết cho n+1
Ta có : 2(n+1) chia hết cho n+1