Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\left(1\right)\)
ĐK:\(x\ne0\)
\(\left(1\right)\Leftrightarrow\dfrac{x^3+1-\left(x^3-1\right)}{\left(x^2+1+x\right)\left(x^2+1-x\right)}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2}{\left(x^2+1\right)^2-x^2}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2x-3}{x\left(x^4+x^2+1\right)}=0\Rightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\left(TM\right)\)
\(\dfrac{9-x}{2009}+\dfrac{11-x}{2011}=2\Leftrightarrow\left(\dfrac{9-x}{2009}-1\right)+\left(\dfrac{11-x}{2011}-1\right)=0\Leftrightarrow\dfrac{-2000-x}{2009}+\dfrac{-2000-x}{2011}=0\\ \Leftrightarrow\left(-2000-x\right)\left(\dfrac{1}{2009}+\dfrac{1}{2011}\right)=0\Rightarrow x=-2000\)
Bài 1:
\(\left(x+4\right)\left(y+3\right)=3\)
\(\Rightarrow\left[{}\begin{matrix}x+4=3\\y+3=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3-4\\y=3-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)
Vậy \(x=-1;y=0\)
b) \(\dfrac{4}{3}-\left(x-\dfrac{1}{5}\right)=\left|-\dfrac{3}{10}+\dfrac{1}{2}\right|-\dfrac{1}{6}\)
\(\Rightarrow\dfrac{4}{3}-x+\dfrac{1}{5}=\left|\dfrac{1}{5}\right|-\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{4}{3}-x+\dfrac{1}{5}=\dfrac{1}{5}-\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{4}{3}-x=-\dfrac{1}{6}\)
\(\Leftrightarrow-x=-\dfrac{1}{6}-\dfrac{4}{3}\)
\(\Leftrightarrow-x=-\dfrac{3}{2}\)
\(\Rightarrow x=\dfrac{3}{2}\)
Vậy \(x=\dfrac{3}{2}\)
1.
ĐK: \(x\ne3;x\ne-2\)
\(\dfrac{5}{x-3}+\dfrac{3}{x+2}\le\dfrac{3+2x}{x^2-x-6}\)
\(\Leftrightarrow\dfrac{5\left(x+2\right)+3\left(x-3\right)}{x^2-x-6}\le\dfrac{3+2x}{x^2-x-6}\)
\(\Leftrightarrow\dfrac{8x+1-3-2x}{x^2-x-6}\le0\)
\(\Leftrightarrow\dfrac{6x-2}{x^2-x-6}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-2\ge0\\x^2-x-6< 0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}6x-2\le0\\x^2-x-6>0\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}6x-2\ge0\\x^2-x-6< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\-2< x< 3\end{matrix}\right.\Leftrightarrow\dfrac{1}{3}\le x< 3\)
TH2: \(\left\{{}\begin{matrix}6x-2\le0\\x^2-x-6>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\\left[{}\begin{matrix}x>3\\x< -2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow x< -2\)
Vậy ...
2.
ĐK: \(x\ne\pm2\)
\(\dfrac{1}{x^2-4}+\dfrac{2}{x+2}>-\dfrac{3}{x-2}\)
\(\Leftrightarrow\dfrac{1}{x^2-4}+\dfrac{2\left(x-2\right)+3\left(x+2\right)}{x^2-4}>0\)
\(\Leftrightarrow\dfrac{5x+3}{x^2-4}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5x+3>0\\x^2-4>0\end{matrix}\right.\\\left\{{}\begin{matrix}5x+3< 0\\x^2-4< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{3}{5}< x< 2\\x< -2\end{matrix}\right.\)
Vậy ...
What? Lớp 10? Mí bài nỳ dễ mak! Trên lp cs hc mak k giải đc thì thui lun!
Giải phương trình \(1+\dfrac{2}{x-2}=\dfrac{-10}{x+3}+\dfrac{50}{\left(2-x\right)\left(x+3\right)}\)
\(1+\dfrac{2}{x-2}=\dfrac{-10}{x+3}+\dfrac{50}{\left(2-x\right)\left(x+3\right)}\left(ĐK:x\ne2;x\ne-3\right)\)
\(\Leftrightarrow\dfrac{\left(2-x\right)\left(x+3\right)}{\left(2-x\right)\left(x+3\right)}-\dfrac{2}{2-x}=\dfrac{-10\left(2-x\right)}{\left(2-x\right)\left(x+3\right)}+\dfrac{50}{\left(2-x\right)\left(x+3\right)}\)
\(\Leftrightarrow2x+6-x^2-3x-2=-20+10x+50\)
\(\Leftrightarrow-x^2+2x-3x-10x+6-2+20-50=0\)
\(\Leftrightarrow-x^2-11x-26=0\)
\(\Leftrightarrow-\left(x^2+2x-13x+26\right)=0\)
\(\Leftrightarrow x\left(x+2\right)-13\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-13\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=13\\x=-2\end{matrix}\right.\)
\(A=\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{2}{x\left(x+1\right)}\)
\(=2\left(\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{x\left(x+1\right)}\right)=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{x-1}{x+1}=\dfrac{2007}{2009}\)
\(\Leftrightarrow2009x-2009=2007x+2007\)
\(\Leftrightarrow2x=4016\)
\(\Leftrightarrow x=2008\)